期刊文献+

基于双注意力机制的遥感图像目标检测 被引量:3

Object Detection of Remote Sensing Image Based on Dual Attention Mechanism
下载PDF
导出
摘要 针对遥感图像在复杂背景下小目标检测精度较低的问题,提出一种基于双注意力机制模型的SSD检测算法。该算法在前端特征提取网络中引入双注意力机制模型,强化低层特征图中小目标的有效特征信息并抑制冗余的语义信息,实现自适应特征学习;并在空间注意力模型中引入空洞卷积,保证卷积核感受野的同时减少了网络参数。引入Focal loss损失函数作为改进算法的分类损失函数,改善网络在训练过程中样本失衡的问题,增加正样本与难样本在训练时的权重比例,提升算法的检测性能。对遥感图像数据集NWPU VHR-10进行检测的结果表明,本文的改进算法在保证检测速度的同时提高了检测精度。与传统SSD算法相比,改进SSD算法的mAP提高了2.25个百分点,达到79.65%。 Aiming at the problem of low accuracy of small target detection in remote sensing image under complex background,an new SSD detection algorithm based on dual attention mechanism model is proposed.The algorithm introduces the dual attention mechanism model in the front-end feature extraction network.It strengthens the effective feature information of small targets in the low-level feature map and suppresses the redundant semantic information to achieve adaptive feature learning.In addition,dilated convolution is introduced into the spatial attention model to ensure the sensitivity of convolution kernel and reduce the parameters of the network.The Focal loss function is introduced as the classification loss function of the improved algorithm to improve the imbalance of samples and increase the weight ratio of positive and difficult samples during training,it promotes the detection performance of the algorithms.The detection results of the remote sensing image data set NWPU VHR-10 show that the improved algorithm not only ensures the detection speed,but also improves the detection accuracy.Compared with the traditional SSD algorithm,the mAP of the improved SSD algorithm is increased by 2.25 percentage points to 79.65%.
作者 周幸 陈立福 ZHOU Xing;CHEN Li-fu(College of Electrical and Information Engineering, Changsha University of Science & Technology, Changsha 410114, China)
出处 《计算机与现代化》 2020年第8期1-7,共7页 Computer and Modernization
基金 国家自然科学基金资助项目(61701047)。
关键词 深度学习 目标检测 特征提取 双注意力机制模型 空洞卷积 Focal loss损失函数 deep learning target detection feature extraction double attention mechanism model dilated convolution Focal loss function
  • 相关文献

参考文献8

二级参考文献127

  • 1陈亮,秦前清.基于SVM的遥感影像目标检测中的样本选取[J].计算机工程与应用,2006,42(9):212-214. 被引量:3
  • 2YIN J H,DAVIES A C ,VELASTIN S A. Crowd monitoring using image processing [J].IEEE Electronics Communication Engineering Journal, 1995,7( 1 ) :37-47. 被引量:1
  • 3CHOW T W,CHO Siu-yeung. Industrial neural vision system for underground railway station platform surveillance [J].Advanced Engineering Informatics, 2002,16 ( 1 ) :73-83. 被引量:1
  • 4VELASTIN S, COSTA L, LOTUFO R ,et al. Automatic estimation of crowd density using texture[J]. Safety Science, 1998,28:165-175. 被引量:1
  • 5CUCCH1ARA R, GRANA C, PICCARDI M,et al. Improving shadow suppression in moving object detection with HSV color information[C] //Proc. IEEE Intelligent Transportation Systems. [S.l.]:IEEE Press, 2001 : 34-339. 被引量:1
  • 6WU Xinyu, LIANG Guoyuan,LEE Kakeung,et al. Crowd density estimation using texture analysis and learning [C]//Proc. IEEE International Conference on Robotics and Biomimetics. [S.l.] :IEEE Press,2006:214-219. 被引量:1
  • 7MA Wenhua, HUANG Lei, LIU Changping. Crowd estimation using multi-scale local texture analysis and confidence-based soft classification [C]//Proc. Second International Symposium on Intelligent Information Technology Application ,2008,1 : 142-146. 被引量:1
  • 8VAPNIK V,CORTES C. Support vector networks[J].Machine Learning, 1995,20 ( 3 ) : 273 -297. 被引量:1
  • 9VAPNIK V,SCHOBLKOPF B,BURGES C. Extracting support data for a given task [EB/OL].[2009-08-20].http://citeseerx.ist.psu.edu/viewdoc/ summary?doi= 10.1.1.42.1588. 被引量:1
  • 10SCHOFER J,USHPIZ A,POLUS A. Pedestrian flow and level of service [J].Journal of Transportation Engineering, 1983,109(1 ) :46-56. 被引量:1

共引文献305

同被引文献23

引证文献3

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部