期刊文献+

基于TCMATCOV平台的常用经典名方治疗新型冠状病毒肺炎潜在作用分析 被引量:11

Analysis of potential role of Chinese classic prescriptions in treatment of COVID-19 based on TCMATCOV platform
原文传递
导出
摘要 随着新型冠状病毒肺炎(coronavirus disease 2019,COVID-19)疫情全球暴发,筛选有效药物成为当今研究的重点,而经典名方的筛选成为药物研发的方向之一。该研究在整理国家及省市发布的新型冠状病毒感染的肺炎诊疗方案的基础上,分析诊疗方案中的经典名方应用情况,进一步探讨其对COVID-19疾病重症期网络的扰动影响,选取代表方剂进行核心靶点筛选以及基因富集分析,从而揭示其作用机制。该研究整理得到68首经典名方,其中,出现频次10次及以上的共13首,包括麻杏石甘汤、银翘散、升降散、达原饮、宣白承气汤等。在此基础上,运用新型冠状病毒肺炎药效预测分析平台(TCMATCOV平台)对涉及的经典名方进行网络扰动计算,根据预测结果得到68首经典名方对COVID-19疾病网络稳健性的扰动评分,以蛋白质相互作用置信分数分别为0.4,0.5和0.6的平均扰动总分进行由大至小排列。得分17分以上的有7首,13分以上的有50首,其中,得分前3名的分别为甘露消毒丹(18.19)、冷哮丸(17.74)、麻杏石甘汤(17.62)。进一步对此3首方剂进行作用靶点挖掘后发现,COVID-19特异性因子Ccl2,IL10,IL6和TNF均为3首方剂的作用靶点。经过核心靶点的生物过程富集分析发现3首方剂对于COVID-19重症期可能通过影响细胞与细胞黏附、细胞因子介导的信号通路、慢性炎症反应等免疫相关通路阻止疾病的发展。研究表明,TCMATCOV平台基于药物干扰的肺炎疾病网络稳健性的方法来评估不同方剂对于COVID-19疾病网络的扰动作用,进行潜在有效性预测,可为进一步的实验或临床验证提供参考。 With the global outbreak of coronavirus disease 2019(COVID-19),screening of effective drugs has became the emphasis of research today;furthermore,screening of Chinese classic prescriptions has became one of the directions for drug development.This study analyzed the application of classic prescriptions in the diagnosis and treatment schemes based on the Diagnosis and Treatment Schemes for Coronavirus Disease at the country,provincial and municipal levels,and further explored its disrobing effect on COVID-19 disease severe phase network,and selected representative prescriptions for core target screening and gene enrichment analysis,so as to reveal its mechanism of action.Among them,13 prescriptions were found to be used for 10 times or more,including Maxing Shigan Tang,Yinqiao San,Shengjiang San,Dayuan Drink,Xuanbai Chengqi Decoction.In addition,the COVID-19 efficacy prediction analysis platform(TCMATCOV platform)was used to calculate the network disturbances of the Chinese classic prescriptions involved.Based on the prediction results,68 classic prescriptions were assessed on the COVID-19 disease network robustness disturbance.The average disturbance scores for the interaction confidence scores were ranked to be 0.4,0.5,and 0.6 from the highest to the lowest.There were 7 prescriptions with a score of 17 or more,and 50 prescriptions with a score of 13 or more.Among them,the top three prescriptions were Ganlu Xiaodu Dan(18.19),Lengxiao Wan(17.74),and Maxing Shigan Tang(17.62).After further mining the action targets of these three prescriptions,it was found that COVID-19 disease-specific factors Ccl2,IL10,IL6 and TNF were all the targets of three prescriptions.Through the enrichment analysis of the biological processes of the core targets,it was found that the three prescriptions may prevent the development of the disease by affecting cell-to-cell adhesion,cytokine-mediated signaling pathway,and chronic inflammatory responses to COVID-19 at the severe phase.This study showed that the TCMATCOV platform could evaluate
作者 唐璇 佟琳 郭非非 唐仕欢 杨洪军 TANG Xuan;TONG Lin;GUO Fei-fei;TANG Shi-huan;YANG Hong-jun(Tianjin University of Traditional Chinese Medicine,Tianjin 301617,China;Institute of Chinese Materia Medica,China Academy of Chinese Medical Sciences,Beijing 100700,China;China Academy of Chinese Medical Sciences,Beijing 100700,China)
出处 《中国中药杂志》 CAS CSCD 北大核心 2020年第13期3028-3034,共7页 China Journal of Chinese Materia Medica
基金 国家“重大新药创制”科技重大专项(2019ZX09201005) 国家自然科学基金项目(81673700)。
关键词 经典名方 COVID-19 TCMATCOV平台 Chinese classical prescriptions COVID-19 TCMATCOV platform
  • 相关文献

参考文献19

二级参考文献177

共引文献1441

同被引文献174

引证文献11

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部