摘要
针对复杂战场环境下目标信息不确定性造成目标识别困难和误判,导致目标识别结果准确率低的问题,提出了一种基于离散因子多传感器目标识别的数据融合方法。通过多时段、多区域获取的多个传感器输出的数据,给出目标特性相应的传感器的离散因子;依据离散因子给出多传感器目标识别的当前权重,建立多传感器目标识别的相对一致性和相对加权一致性等函数;结合多传感器目标识别的当前权重以及相关的一致性函数,构建了多传感器目标识别的数据融合支持度计算模型。试验结果表明:在复杂环境下,与提前给定传感器权重目标识别的数据融合方法比较,基于离散因子多传感器目标识别的数据融合方法的目标识别结果更加准确,符合实际。说明这种方法更加可靠,并具有一定的抗干扰能力。
In the complex battlefield environment,the uncertainty of target information causes the target recognition difficulty and misjudgment,which brings about the problem of a low accuracy of target recognition results.This paper proposes a data fusion method for multi-sensor target recognition based on the discrete factor,which can give rise to the output data of the multi-sensor at the multi-period and multi-regions detection,and bring about the discrete factor of obtaining target characteristic corresponding sensors.It can provide the current weight of multi-sensor target recognition according to the discrete factor,establish the relative consistency and the relative weighted consistency function of multi-sensor target recognition,combine the current weight of multi-sensor target recognition and the related consistency function,and construct the data fusion result support calculation model of multi-sensor target recognition.Experimental results show that when the environment is complex,the data fusion method for multi-sensor target recognition based on the discrete factor has more accurate target recognition results,which conforms to the reality in comparison with the data fusion method for target recognition with a given sensor weight in advance.It is shown that the method proposed in this paper is more reliable and has a certain anti-interference ability.
作者
卢莉萍
张晓倩
LU Liping;ZHANG Xiaoqian(School ofComputer Science and Engineering,Xi’an Technological University,Xi’an 710021,China;School of Electronic and Information Engineering,Xi’an Technological University,Xi’an 710021,China)
出处
《西安电子科技大学学报》
EI
CAS
CSCD
北大核心
2020年第4期31-38,共8页
Journal of Xidian University
基金
陕西省重点研发计划项目(2019GY-034)。
关键词
多传感器
离散因子
当前权重
一致性
数据融合
multi-sensor
discrete factor
current weight
consistency
data fusion