期刊文献+

基于卷积神经网络的翻拍图片哈希检索方法 被引量:2

Hash Retrieval Method for Recaptured Images Based on Convolutional Neural Network
下载PDF
导出
摘要 提出一种基于卷积神经网络的翻拍图片哈希检索方法,基本思路是:在卷积神经网络中加入哈希层,提取哈希层输出的二值哈希码用于图像检索;检索匹配阶段采取由粗到精的分级检索策略,依次计算查询图像与图片库中图像之间的距离,得到最终的检索结果。在翻拍广告图片集上的实验结果表明:该方法对翻拍图片旋转、缩放、遮挡、反光等不敏感,与仅使用fc7层输出进行检索相比,平均检索精度值增加了12.1%。 This paper proposes a hash retrieval method for recaptured images based on convolutional neural network.The basic idea is to add a hash layer to the convolutional neural network,and extract the binary hash code output by the hash layer for image retrieval.Then,a hierarchical search strategy from coarse-to-fine is used to calculate the distance between the query image and the image in the image dataset in order to obtain the final search result.The experimental results on the recaptured advertisement image collection show that the method in this paper is insensitive to recaptured image rotation,scaling,occlusion,reflectionetc.Compared with only the output of fc7 layer for retrieval,the mean average precision increased by 12.1%.
作者 李晶 王翾 刘守训 LI Jing;WANG Xuan;LIU Shou-xun(School of Information and Communication Engineering,Communication University of China,Beijing 100024,China)
出处 《中国传媒大学学报(自然科学版)》 2020年第2期65-71,共7页 Journal of Communication University of China:Science and Technology
关键词 图像检索 卷积神经网络 翻拍图片检索 分级检索 image retrieval convolutional neural network recaptured image retrieval hierarchical retrieval
  • 相关文献

参考文献1

二级参考文献42

  • 1吴洪,卢汉清,马颂德.基于内容图像检索中相关反馈技术的回顾[J].计算机学报,2005,28(12):1969-1979. 被引量:52
  • 2Jegou H, Douze M, Sehmid C, et al. Aggregating local descrip- tors into a compact image representation[C] ffProeeedings of the IEEE Conference on Computer Vision and Pattern Recogni- tion. 2010 : 3304-3311. 被引量:1
  • 3Charikar M S. Similarity estimation techniques from rounding algorithms[C] //Proceedings of the Symposium on Theory of Computing. 2002 : 380-388. 被引量:1
  • 4Xia R, Pan Y, Lai H, et al. Supervised Hashing for Image Re- trieval via Image Representation Learning[C] ffProeeedings of AAAI Conference on Artificial Intelligence (AAAI). 2014. 被引量:1
  • 5Gong Y, Lazebnik S. Iterative quantization: A procrustean ap- proach to learning binary codes[C] ff Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2011 : 817-824. 被引量:1
  • 6Jegou H, Douze M, Schmid C. Hamming embedding and weak geometric consistency for large scale image search [C]//Pro- ceedings of the European Conference on Computer Vision. 2008 : 304-317. 被引量:1
  • 7Gionis A, Indyk P, Motwani R. Similarity search in high dimen- sions via hashing[C]//Proceedings of the International Confe- rence on Very Large Data Bases. 1999,99:518-529. 被引量:1
  • 8Kleinberg J M. Two algorithms for nearest-neighbor search in high dimensions[C]//Proceedings of the Symposium on Theory of Computing. New York: ACM Press, 1997 : 599-608. 被引量:1
  • 9Kulis B, Grauman K. Kernelized locality-sensitive hashing[J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence,2012,34(6):1092-1104. 被引量:1
  • 10Weiss Y, Torralba A, Fergus R. Spectral Hashing[J]. Procee- dings of the Advances in Neural Information Processing Sys- tems. 2008,283(3) :1753-1756. 被引量:1

共引文献16

同被引文献9

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部