期刊文献+

融合彩色信息和深度信息的GrabCut图像分割 被引量:1

GRABCUT IMAGE SEGMENTATION COMBINING COLOR AND DEPTH INFORMATION
下载PDF
导出
摘要 图像分割是计算机视觉的重要组成部分,但大多数图像分割工作主要集中在二维图像的处理上,故结合深度信息和GrabCut算法提出一种新的分割方法。为了准确地分割出目标物体,利用物体深度信息的同时提出一种基于背景和前景先验的GrabCut图像分割方法。融入深度信息,选择深度特征结合流形排序算法来构造图模型;为了进一步突出目标对象,抑制背景区域,分别利用背景先验和前景先验,生成相应的显著图,将二者融合并进行优化得到最终待处理图像;以深度信息指导GrabCut算法进行精分割,得到分割结果。实验结果表明,该方法能够较为准确地分割出目标对象。 Image segmentation is an important part of computer vision,but most image segmentation work mainly focuses on the processing of two-dimensional images.To this end,we propose a new segmentation method combining depth information and GrabCut algorithm.In order to segment the target object accurately,we propose a GrabCut image segmentation method based on background and foreground prior while using the depth information of the object.Taking the depth information into account,we chose the depth feature and the manifold sorting algorithm to construct the graph model;to further highlight the target object and suppress the background area,we used the background prior and foreground prior respectively to generate the corresponding saliency map,and the final image to be processed was obtained by fusion and optimization;the depth information was used to guide the GrabCut algorithm to perform fine segmentation,and the segmentation results were obtained.The experimental results show that our method can accurately segment the target object.
作者 凌滨 郭也 赵永辉 李超 Ling Bin;Guo Ye;Zhao Yonghui;Li Chao(School of Mechanical and Electrical Engineering,Northeast Forestry University,Harbin 150036,Heilongjiang,China)
出处 《计算机应用与软件》 北大核心 2020年第8期188-193,共6页 Computer Applications and Software
基金 国家自然科学基金项目(31700643) 中央高校基本科研业务费专项资金项目(2572018BF15)。
关键词 图像分割 深度信息 GrabCut算法 背景先验 前景先验 Image segmentation Depth information GrabCut algorithm Background prior Foreground prior
  • 相关文献

参考文献4

二级参考文献21

  • 1张小洪,李博,杨丹.一种新的Harris多尺度角点检测[J].电子与信息学报,2007,29(7):1735-1738. 被引量:78
  • 2Boykov Y,Jolly M P.Interactive organ segmentation using graph cuts[C]//Proceedings of the 3rd International Conference on Medical Image Computing and Computer-Assisted Intervention.Pittsburgh,USA:Springer,2000:276-286. 被引量:1
  • 3Boykov Y,Jolly M P.Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images[C]//Proceedings of the 8th IEEE International Conference on Computer Vision.Vancouver,Canada:IEEE,2001:105-112. 被引量:1
  • 4Rother C,Kologorov V,Blake A.“Grab Cut”:interactive foreground extraction using iterated graph cuts[C]//Proceedings of the ACM SIGGRAPH Conference.Los Angeles,USA:ACM,2004:309-314. 被引量:1
  • 5Li Y,Sun J,Tang C K,et al.Lazy snapping[J].ACM Transactions on Graphics,2004,23(3):303-308. 被引量:1
  • 6Radhakrishna A,Shaji A,Smith K,et al.SLIC superpixels,Technical Report 149300[R].EPFL,2010. 被引量:1
  • 7Radhakrishna A,Shaji A,Smith K,et al.SLIC superpixels compared to state-of-the-art superpixel methods[J].Journal of Latex Class Files,2011,6(1). 被引量:1
  • 8Shi Jianbo,Malik J.Normalized cuts and image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence(PAMI),2000,22(8):888-905. 被引量:1
  • 9Felzenszwalb P,Huttenlocher D.Efficient graph-based image segmentation[J].International Journal of Computer Vision(IJCV),2004,59(2):167-181. 被引量:1
  • 10Veksler O,Boykov Y,Mehrani P.Superpixels and super- voxels in an energy optimization framework[C]//European Conference on Computer Vision(ECCV),2010. 被引量:1

共引文献43

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部