期刊文献+

基于改进的全变差方法的图像分解 被引量:2

Image Decomposition Based on Improved Total Variation Method
下载PDF
导出
摘要 图像分解是将图像的不同组成部分利用分解算法分别提取出来,而全变差方法是基于PDE方法进行图像处理问题的一种数学方法。在Meyer等思想的影响下,对现有基于BV(Ω)空间的全变差(TV)正则项进行分析研究后,提出了一种L1(Ω)空间上的改进的全变差正则模型。在改进的TV方法基础上,首先分别推荐了改进的TV-G和TV-H-1图像分解极小泛函模型;然后给出了相应的欧拉-拉格朗日方程以及对应的数值解;最后,对3类测试图像,包括纹理类图像、航空类图像、杂类图像分别进行了图像分解数值实验,同时也进行了信噪比和时间效率的对比分析。实验结果表明:改进的TV-H-1模型在针对纹理类图像分解时,分解效果优于TV-H-1模型,而改进的TV-G模型在针对上述3类图像分解时,大部分图像分解效果优于TV-G模型。 Image decomposition is to separate one image into some different components using decomposition algorithm. However,it is a mathematical method based total variation method for image processing problems. Inspired Meyer ’s ideas, they propose one new improved total variation regularization model after analyzing the current total variation( TV) regular terms. Based on the improved TV method,the improved TV-G and TV-H-1 image decomposition mini-functional models are firstly proposed, and then the corresponding Euler-Lagrange equations and corresponding numerical solutions are given. Finally, three kinds of test images, including texture images,aeronautical images,and miscellaneous images,are respectively subjected to image decomposition numerical experiments,and a comparative analysis of signal-to-noise ratio and time efficiency are also carried out. The experimental results show that the improved TV-H-model has better decomposition effect than the TV-H-1 model when decomposing for texture-like images,while the improved TV-G model is mostly for the above three types of image decomposition. The decomposition effect is better than the TV-G model.
作者 刘瑞华 谢挺 LIU Ruihua;XIE Ting(Liangjiang Artificial Intelligence College,Chongqing University of Technology,Chongqing 401135,China;School of Science,Chongqing University of Technology,Chongqing 400054,China)
出处 《重庆理工大学学报(自然科学)》 CAS 北大核心 2020年第7期156-161,共6页 Journal of Chongqing University of Technology:Natural Science
基金 重庆市自然科学基金项目(CSTC2019JCYJ-MSXMX0500) 重庆市教委科学技术基金项目(KJ1709207)。
关键词 图像分解 全变差 数值解 极小泛函 image decomposition total variation numerical solution minimal functional
  • 相关文献

参考文献4

二级参考文献35

  • 1朱宁,吴静,王忠谦.图像放大的偏微分方程方法[J].计算机辅助设计与图形学学报,2005,17(9):1941-1945. 被引量:49
  • 2王枚,潘国华,王国宏,尤晶晶.运动和散焦模糊图像的复原方法及其应用研究[J].激光与红外,2007,37(10):1120-1122. 被引量:6
  • 3贾渊,刘鹏程,牛四杰.偏微分方程图像处理及程序设计[M].北京:科学出版社,2012,8. 被引量:2
  • 4ARIAS P,FACCIOLO G, CASELLES V, et al. A variational framework for exemplar-based image inpainting [ J ]. International Journal of Computer Vision, 2011, 93 ( 3 ) : 319-347. 被引量:1
  • 5BERTALMIO M, SAPIRO G, CASELLES V, et al. Image inpainting [ C ]//Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press/Addison-Wesley Publishing Co., 2000: 417-424. 被引量:1
  • 6SHEN Jianhong, CHANT F. Mathematical models for local non-textureinpaintings [ J ]. SIAM Journal on Applied Mathematics, 2002, 62(3): 1019-1043. 被引量:1
  • 7RUDIN L I, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms [ J ]. Physica D: Nonlinear Phenomena, 1992, 60( 1/2/3/4): 259-268. 被引量:1
  • 8BERTALMIO M, BERTOZZI A L, SAPIRO G. Navier- stokes, fluid dynamics, and image and video inpainting [ C ]// Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2001, 1(1) : 355-362. 被引量:1
  • 9CRIMINISI A, PEREZ P, TOYAMA K. Object removal by exemplar-based inpainting [ C ]// Proceedings 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2003, 2(2): 721-728. 被引量:1
  • 10CRIMINISI A, PREZ P, TOYAMA K. Region filling and object removal by exemplar-based image inpainting [ J]. IEEE Transactions on Image Processing, 2004, 13 ( 9 ) : 1200-1212. 被引量:1

共引文献17

同被引文献13

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部