期刊文献+

基于多特征融合的意图识别算法研究

Research on Intent Recognition Algorithm Based on Multi-feature Fusion
下载PDF
导出
摘要 针对中文口语短文本缺少上下文信息、语法不规范和噪声较大等特征造成语义模糊,进而导致用户意图识别准确率不高的问题,提出了一种基于多特征融合的意图识别算法。算法对传统Bi-LSTM(Bi-directional Long Shot-Term Memory)文本分类算法进行改进,将原始文本的字向量、词向量、词性向量和实体知识库向量进行融合,结合字级别的意图识别模型,在人工标注的实际场景下的用户意图数据集上进行训练和测试。实验结果表明,改进后的用户意图识别算法在实际场景中准确率等评价指标有明显提高。 To solve the problem of semantic ambiguity caused by the lack of contextual information,irregular grammar in the spoken Chinese text,an intention recognition algorithm based on multi-feature fusion is proposed,which improves the traditional Bi-LSTM(Bi-directional Long Shot-Term Memory)text classification algorithm.The improved algorithm fuses the character vector,word vector,part-of-speech vector and entity-knowledge-based vector of the original text,combines the character level intention recognition model,and conducts training and testing on the user intention data set under the real scene of manual annotation.The experimental results show that the improved intention recognition algorithm has a significant improvement in the accuracy and oth⁃er evaluation indexes in the real scene.
作者 周权 陈永生 郭玉臣 ZHOU Quan;CHEN Yong-sheng;GUO Yu-chen(Department of Computer Science and Technology,Tongji University,Shanghai 201804,China)
出处 《电脑知识与技术》 2020年第21期28-31,共4页 Computer Knowledge and Technology
关键词 意图识别 短文本分类 多特征融合 词嵌入 深度学习 Bi-LSTM intent recognition short text classification multi-feature fusion word embedding deep learning Bi-LSTM
  • 相关文献

参考文献1

二级参考文献11

  • 1[2]D.D.Lewis,Challenges in Machine Learning for Text Classification.The 9th Annual Conference on Computational Learning Theory.Italy,1996. 被引量:1
  • 2[3]D.D.Lewis,Representation and Learning in Infor mation Retrieval,Doctoral Thesis,1992. 被引量:1
  • 3[4]F.Debole,ESebastiani,An Analysis of the Relative Hardness of Reuters-21578 Subsets.Journal of the American Society for Information Science and Technology,Vol.56,No.6,2005. 被引量:1
  • 4[5]F.Sebastiani,Machine Learning in Automated Text Categorization,ACM Computing Surveys,Vol.34,No.1,March 2002,pp.1-47. 被引量:1
  • 5[6]K.Aas,L.Eikvil,Text Categorisation:A Survey.http://www.nr.no/files/samba/bamg/tm_survey.ps. 被引量:1
  • 6[7]R.E.Schapire,Y.Singer.Improved Boosting Algorithms Using Confidence-Rated Predictions.Machine Learning,Vol.37,No.3,pp.297-336,1999. 被引量:1
  • 7[8](美)Tom M.Mitchell著,曾华军,张银奎,等译.机器学习[M].机械工业出版社,2002. 被引量:1
  • 8[9]Y.Yang,J.Pedersen,A comparative study on feature election in text categorization.International conference on Machine Learning (ICML),1997.http://citeseer.ist.psu.edu/yang97comparative.html. 被引量:1
  • 9[10]Y.Yang,An Evaluation of Statistical Approaches to Text Categorization.Information Retrieval,Vol.1,No.1-2,1999. 被引量:1
  • 10[11]C.J.van Rijsbergen,Information Retrieval.University of Glasgow,1979. 被引量:1

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部