期刊文献+

基于可变形状参数Gamma混合模型的区域化模糊聚类SAR图像分割 被引量:3

SAR image segmentation algorithm of regionalized fuzzy clustering based on the Gamma mixture model with variable shape parameter
原文传递
导出
摘要 为了解决传统模糊聚类算法无法准确刻画SAR图像强度分布特征以及抗噪性差等问题,提出一种基于可变形状参数Gamma混合模型(GaMM)的区域化模糊聚类SAR图像分割方法.首先,利用Voronoi划分技术将SAR图像完备地划分为若干个Voronoi多边形;然后,假设SAR图像强度服从可变形状参数的GaMM,以GaMM的负对数函数刻画多边形与聚类间的非相似性关系,并结合具有邻域多边形空间约束作用的规则化项定义区域化模糊聚类目标函数;在模型参数求解的过程中,对于无法直接通过导数求解的形状参数及生成点集,设计以目标函数最小化为准则的移动更新操作以逐步逼近最优解.通过对真实及模拟SAR图像分割结果进行定性定量分析,有效地验证了所提出算法对SAR图像强度分布拟合的准确性及分割的抗噪性. For the problem of that the traditional fuzzy clustering algorithm cannot precisely describe the distribution characteristics of synthetic aperture radar(SAR)intensity image and overcome the inherently existed speckle noises,the SAR image segmentation algorithm of regionalized fuzzy clustering based on the Gamma mixture model(GaMM)with variable shape parameter is proposed.Firstly,the image domain is completely divided into several Voronoi polygons by Voronoi tessellation.Assuming that the pixel intensities follow the GaMM with variable shape parameter,the nonsimilarity measure between the intensities of pixels in Voronoi polygons and clusters is described by the negative logarithmic function of the GaMM.Then,the regionalized fuzzy objective function is defined by combining the GaMM and regularization term with spatial constraint between neighbor Voronoi polygons.In the parameter estimation procedure,the moving-updating operations are designed to solve the implicit parameters according to the criterion of minimizing the objective function.The qualitative and quantitative analyses for the segmentation results of real and simulated SAR images effectively prove the fitting ability of the regionalized GaMM with variable shape parameters to SAR data and the noise-tolerant ability of the proposed algorithm.
作者 李晓丽 赵泉华 李玉 LI Xiao-li;ZHAO Quan-hua;LI Yu(School of Geomatics,Liaoning Technical University,Fuxin 123000,China)
出处 《控制与决策》 EI CSCD 北大核心 2020年第7期1639-1644,共6页 Control and Decision
基金 国家自然科学基金项目(41271435,41301479) 辽宁省自然科学基金项目(2015020090) 辽宁工程技术大学研究生教育创新计划项目(YB201605)。
关键词 可变形状参数 Gamma混合模型 VORONOI划分 空间约束 模糊聚类 SAR图像分割 variable shape parameter Gamma mixture model Voronoi tessellation spatial constraint fuzzy clustering SAR image segmentation
  • 相关文献

参考文献6

二级参考文献69

共引文献74

同被引文献25

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部