期刊文献+

基于多样性全局最优引导和反向学习的离子运动算法 被引量:9

Ions motion optimization algorithm based on diversity optimal guidance and opposition-based learning
原文传递
导出
摘要 针对离子运动算法空间探索能力和开发能力的不足,提出一种改进算法.在离子运动算法的液态阶段中,该算法嵌入一种多样性反馈搜索机制和全局最优引导策略的算法结构;同时,优化算法晶态阶段中的初始化过程采用反向学习方法生成,其中,初始化概率采用动态惯性改变方式.经过国际上通用的23个基准函数测试,与一些流行的元启发式算法比较,并从平均收敛值、方差、Wilcoxon符号秩检验、收敛成功率以及最优收敛时间等方面进行综合评估,从而表明所提出算法的有效性. To the weaknesse of space exploration and exploitation of ions motion algorithms,an improved algorithm is proposed.In the liquid phase of the ions motion algorithm,a diversity feedback search mechanism and a global optimal guidance strategy are embedded in the algorithm structure.Meanwhile,the initialization process in the crystal phase of the optimization algorithm is generated by using the opposition-based learning method,in which the initialization probability is changed by dynamic inertia.The proposed algorithm is tested using the 23 international bench mark functions and compared with some popular meta-heuristics algorithms,furthermore are comprehensively evaluated in terms of the average convergence value,variance,Wilcoxon’s sign rank test,convergence success rate and optimal convergence time.The results show the effectiveness of the proposed algorithm.
作者 汪超 王丙柱 岑豫皖 谢能刚 WANG Chao;WANG Bing-zhu;CEN Yu-wan;XIE Neng-gang(College of Mechanical Engineering,Anhui University of Technology,Maánshan243002,China;College of Mechanics and Materials,Hehai University,Nanjing210098,China;Engineering Research Center,Hydraulic Vibration and Control of Ministry of Education,Maánshan243002,China;National Machine Quality Supervision and Inspection Center,Maánshan243002,China)
出处 《控制与决策》 EI CSCD 北大核心 2020年第7期1584-1596,共13页 Control and Decision
基金 国家自然科学基金项目(61375068) 安徽省科技攻关面上项目(1704a0902008) 安徽工业大学校青年基金项目(RD18100232)。
关键词 离子运动算法 全局最优引导 多样性反馈 反向学习 ions motion algorithm global optimal guidance diversity feedback opposition-based learning
  • 相关文献

参考文献8

二级参考文献74

  • 1Karaboga D.An idea based on honey bee swarm for numerical optimization[R].Erciyes University,Engineering Faculty,Computer Engineering Department,2005. 被引量:1
  • 2Kennedy J,Eberhart R.Particle swarm optimization[C].IEEE Int Conf on Neural Networks.Perth,1995: 1942-1949. 被引量:1
  • 3Tang K S,Man K F,Kwong S,et al.Genetic algorithms and their applications[J].IEEE Signal Processing Magazine,1996,13(6): 22-37. 被引量:1
  • 4Dorigo M,Stutzle T.Ant colony optimization[M].Cambrige: MA MIT Press,2004. 被引量:1
  • 5Karaboga D,Basturk B.A powerful and efficient algorithm for numerical function optimization: Artificial bee colony(ABC) algorithm[J].J of Global Optimization,2007,39(3): 459-471. 被引量:1
  • 6Karaboga D,Basturk B.A comparative study of artificial bee colony algorithm[J].Applied Mathematics and Computation,2009,214(1): 108-32. 被引量:1
  • 7Karaboga D,Akay B.A modified artificial bee colony(ABC) algorithm for constrained optimization problems[J].Applied Soft Computing,2011,11(3): 3021-3031. 被引量:1
  • 8Karaboga D.A novel clustering approach: Artificial bee colony(ABC) algorithm[J].Applied Soft Computing,2011,11(1): 652-657. 被引量:1
  • 9Hsieh T J,Hsiao H F.Forecasting stock markets using wavelet transforms and recurrent neural networks: An integrated system based on artificial bee colony algorithm[J].Applied Soft Computing,2011,11(2): 2510-2525. 被引量:1
  • 10Gao W F,Liu S Y.A modified artificial bee colony algorithm[J].Computers and Operations Research,2012,39(3): 687-697. 被引量:1

共引文献222

同被引文献63

引证文献9

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部