期刊文献+

海洋多平台多传感器协同监测任务智能规划技术 被引量:3

The AI Planning Technology of Marine Multi-Platform and Multi-Sensor Cooperative Monitoring Task
下载PDF
导出
摘要 海洋多平台多传感器协同监测任务智能规划技术面向大型复杂海洋传感网络,能够在海洋信息平台及传感设备大规模海上部署的情况下进行大批量的任务规划和观测资源分配,形成海洋情报分析-系统行动规划-行动规划实施-精确情报再收集的良性闭环监测模式。针对重要海上态势,能够通过多平台、多传感器协同行动规划手段,对情报进行持续的、多手段协同的精确观测,有效提升海洋传感网络的监测效率和精确度,显著降低系统对指挥调度人员的素质经验要求,极大提升了海洋传感网络系统的指挥调度智能化自动化水平。该技术全面分析了海洋传感网络的共性特点和特性差异,充分考虑了海上环境、能源、通信等多方面制约因素,建立具有广泛适应性的海洋多平台多传感器协同监测任务智能规划问题模型,能够快速移植到不同的海洋传感网络,采用差分进化、蚁群、贪心等多种群体人工智能算法和状态空间启发式搜索算法,满足不同业务场景规划的需求,同时具备智能约束匹配和规划冲突消解的能力,实现运行规划动态调整、系统资源实时匹配和协同保障。 The AI planning technology of marine multi-platform and multi-sensor cooperative monitoring task is oriented to large-scale complex ocean sensor network,which can carry out large-scale task planning and observation resource allocation,thus form a loop monitoring model consists of marine intelligence analysis,action planning through system software,action plan implementation,and precise intelligence re-collection.Aiming at important maritime situation,continuous and multi-means cooperative accurate observation could be done by multi-platform and multi-sensor cooperative action planning,which effectively improves the monitoring efficiency and accuracy of the marine sensing network,significantly reduces the experience requirement of command and dispatch personnel,and greatly improves the level of intelligence of the marine sensing network.This technology comprehensively analyzes the common characteristics and differences of ocean sensor networks,takes into full consideration of the marine environment,energy,communication and other various restricting factors,and establishes a model of AI planning of marine multi-platform and multi-sensor cooperative monitoring with wide adaptability,which can be rapidly transplanted into different ocean sensor networks.It can meet the needs of different business scenarios planning and has the ability of intelligent constraint matching and conflict resolution by using multi-group artificial intelligence algorithms such as differential evolution,ant colony algorithm and greedy algorithm,as well as state space heuristic search algorithm,and finally realize dynamic adjustment of operation planning,real-time matching of system resources and cooperative guarantee.
作者 侯睿 程宇婷 李晖 赵曼 应文 HOU Rui;CHENG Yuting;LI Hui;ZHAO Man;YING Wen(China University of Geosciences(Wuhan)Key Laboratory of Geological Survey and Evaluation of Ministry of Education,Wuhan 430074,China;China Electronics Technology Group Corporation,Beijing 100041,China)
出处 《海洋信息》 2020年第3期11-19,共9页 Marine Information
基金 地质探测与评估教育部重点实验室主任基金和中央高校基本科研业务费(编号GLAB2019ZR13)。
关键词 多平台多传感器 海洋传感网络 任务规划 群体人工智能算法 状态空间启发式搜索算法 multi-platform and multi-sensor ocean sensor network task planning group artificial intelligence algorithm state space heuristic search algorithm
  • 相关文献

参考文献16

  • 1吴庆洪,张颖,马宗民.蚁群算法综述[J].微计算机信息,2011,27(3):1-2. 被引量:33
  • 2刘莉莉..K-均值聚类算法的研究与改进[D].曲阜师范大学,2015:
  • 3彭雪..演化算法和蚁群算法的性能分析[D].华南理工大学,2016:
  • 4钟新梅.海洋水下无线传感网络资源准确探测仿真研究[J].计算机仿真,2017,34(7):260-263. 被引量:2
  • 5惠绍棠.水下自航式海洋观测平台技术发展研究[J].海洋技术,2001,20(4):11-17. 被引量:10
  • 6魏玉霞..差分进化算法的改进及其应用[D].华南理工大学,2013:
  • 7徐斌..基于差分进化算法的多目标优化方法研究及其应用[D].华东理工大学,2013:
  • 8武志峰..差异演化算法及其应用研究[D].北京交通大学,2009:
  • 9张建库..海洋环境下UUV协同任务规划方法研究[D].哈尔滨工程大学,2019:
  • 10唐鹏..基于ADS-B数据监视性能评估技术研究[D].中国民航大学,2015:

二级参考文献95

共引文献143

同被引文献39

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部