期刊文献+

一种倾斜影像密集匹配算法的设计与实现 被引量:3

Design and Implementation of Dense Matching Algorithm Based on Oblique Images
下载PDF
导出
摘要 计算机视觉领域的PMVS算法在多视角影像匹配中具有很好的匹配效果,但将其直接引入航空倾斜影像匹配还存在一些问题:随着影像数据量的增加,PMVS算法对计算机内存占用呈几何增长;PMVS算法针对大倾角的影像匹配存在一些问题;在候选面片生成时,PMVS算法采用固定大小的窗口采集待匹配影像像素,若窗口选择过小,则参与匹配的像素信息少,匹配效果不佳,若窗口选择过大,则将导致匹配耗时过长。针对上述问题,采用分块PMVS策略,提出了改进的自适应窗口匹配算法。实验结果表明,该算法能有效解决将PMVS算法直接引入航空倾斜影像密集匹配中存在的问题,具有一定的实用性。 In the field of computer vision,PMVS algorithm has very good matching effect.However,there are still some problems in introducing PMVS algorithm directly into aerial oblique image matching.With the increase of the amount of image data,PMVS algorithm also has a sharp increase in computer memory.PMVS algorithm has some problems for image matching of large dip angle.PMVS algorithm adopts fixed size window to collect pixels of image to be matched,if the window selection is too small,the pixel information involved in the matching is less,and the matching effect is not good.While,if the window selection is too large,the matching time will be too long.According to the above problems,we used the block PMVS strategy to put forward a matching algorithm based on self-adaption window.The experimental result shows that the proposed algorithm can effectively solve the problems of introducing PMVS into the dense matching of aerial oblique images,which has certain practicability.
作者 倪标 王铮尧 NI Biao;WANG Zhengyao
出处 《地理空间信息》 2020年第7期66-69,I0006,共5页 Geospatial Information
关键词 密集匹配 倾斜摄影 PMVS算法 分块 自适应窗口 dense matching oblique photography PMVS algorithm block selfadaption window
  • 相关文献

参考文献6

二级参考文献49

  • 1纪松,范大昭,初艳峰,杨靖宇.线阵遥感影像多视立体匹配中VLL模型的扩展[C]//第17届测控、计量、仪器仪表学术年会论文集,2007. 被引量:2
  • 2同济大学数学系.高等数学[M].6版.北京:高等教育出版社,2007:341-345. 被引量:61
  • 3ZHANG Li.Automatic Digital Surface Model(DSM)Generation from Linear Array Images[D].Switzerland:Swiss Federal Institute of Technology Zurich,2005. 被引量:1
  • 4FURUKAWA Y,PONCE J.Accurate,Dense,and Robust Multi-view Stereopsis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(8):1362-1376. 被引量:1
  • 5STRECHA C,FRANSENS R,VAN GOOL L.Combined Depth and Outlier Estimation in Multi-view Stereo[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition.New York,2006:2394-2401. 被引量:1
  • 6GARGALLO P,STURM P.Bayesian 3D Modeling from Images Using Multiple Depth Maps[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Los Alamitos,2005:885-891. 被引量:1
  • 7CAMPBELL N D F,VOGIATZIS G,HERNNDEZ C,et al.Using Multiple Hypotheses to Improve Depth-maps for Multiview Stereo[M].Springer Berlin Heidelberg,2008:766-779. 被引量:1
  • 8FURUKAWA Y,PONCE J.Accurate,Dense,and Robust Multiview Stereopsis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(8):1362-1376. 被引量:1
  • 9SEITZ S M,CURLESS B,DIEBEL J,et al.A Comparison and Evaluation of Multi-view Stereo Reconstruction Algorithms[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition.New York,2006:519-528. 被引量:1
  • 10FURUKAWA Y,CURLESS B,SEITZ S M,et al.Clustering Views for Multi-view Stereo[C]∥Proceedings from the IEEE Conference on Computer Vision and Pattern Recognition.San Francisco,2010:1434-1441. 被引量:1

共引文献21

同被引文献22

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部