期刊文献+

相似度自适应估计的物联网实体高效搜索方法 被引量:1

Efficient Search Method for Io T Entities with Similarity Adaptive Estimation
下载PDF
导出
摘要 针对现有相似实体搜索方法缺乏对于观测序列长度的自适应性,且搜索过程数据存储开销过大,搜索结果准确性较低的问题,该文提出相似度自适应估计的物联网实体高效搜索方法(SAEES)。首先,设计了轻量级观测序列分段表示方法,对传感器采集的实体原始观测序列进行轻量级分段压缩表示,以降低实体观测序列的存储开销。然后,提出了观测序列相似度自适应估计方法,实现对不同观测序列长度的实体相似性的准确估计。最后,设计了高效的相似实体搜索匹配方法,依据所估计的实体相似度进行实体的准确搜索匹配。仿真结果表明,所提方法可大幅提高相似实体搜索的效率。 The existing similar entity search method has poor adaptability to the length of the observed sequence, and the data storage overhead in the search process is too large, and the accuracy of the search result is insufficient. To this end, an efficient search method is proposed for the IoT Entity Search with Similarity Adaptive Estimation(SAEES). Firstly, in order to reduce the storage overhead of the entity observation sequence, a lightweight method of segmentation representation of the observation sequence is designed to perform a lightweight segmentation compression representation of the original observation sequence of the entity collected by the sensor. Then, in order to achieve an accurate estimation of the similarity of entities with different observation sequence lengths, an adaptive estimation method for observation sequence similarity is proposed. Finally, by exploiting the designed efficient similar entity search matching method, the exact search matching of the entity is completed according to the estimated entity similarity. The simulation results show that the proposed method can greatly improve the efficiency of similar entity search.
作者 张普宁 亢旭源 刘宇哲 李学芳 吴大鹏 王汝言 ZHANG Puning;KANG Xuyuan;LIU Yuzhe;LI Xuefang;WU Dapeng;WANG Ruyan(School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;Optical Communication and Networks Key Laboratory of Chongqing,Chongqing 400065,China;Ubiquitous Sensing and Networking Key Laboratory of Chongqing,Chongqing 400065,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2020年第7期1702-1709,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61871062,61901071) 重庆市高校创新团队建设计划资助项目(CXTDX201601020) 重庆市自然科学基金面上项目(cstc2019jcyj-msxmX0303) 重庆市教委科学技术研究项目(KJQN201800615) 第五批重庆市高校优秀人才支持计划(渝教人发[2017]29号)。
关键词 物联网 实体搜索 相似度 自适应估计 Internet of Things(IoT) Entity search Similarity Adaptive estimation
  • 相关文献

参考文献6

二级参考文献115

  • 1王海霞,覃团发.综合MPEG-7中颜色特征的图像检索方法[J].计算机应用研究,2005,22(3):164-165. 被引量:20
  • 2周立柱,林玲.聚焦爬虫技术研究综述[J].计算机应用,2005,25(9):1965-1969. 被引量:153
  • 3Benedikt O,Kay R,Friedemann M,et al..A real-time search engine for the web of things[C].Internet of Things,Tokyo,2010:1-8. 被引量:1
  • 4Cuong T and Kay R.Content-based sensor search for the web of things[C].Global Communications Conference,Atlanta,2013:2654-2660. 被引量:1
  • 5http://db.csail.mit.edu/labdata/labdata.html[OL].2014.10. 被引量:1
  • 6ATZORI L, IERA A, MORABITO G. The Internet of Things: a survey[J]. Computer Networks, 2010, 54( 15): 2787-2805. 被引量:1
  • 7LIU H, BOLIC M, NAYAKAND A, et al. Taxonomy and challenges of the integration of RFID and wireless sensor networks[J]. IEEE Net- work, 2008, 22(6): 26-35. 被引量:1
  • 8ENGLUND C, WALLIN H. RFID in wireless sensor network, EX034/2004[R]. Sweden: Communication Systems Group, Depart- ment of Signals and Systems, Chalmers University of Technology, 2004. 被引量:1
  • 9BRIN S, PAGE L The anatomy of a large-scale hypertextual Web search engine[J]. Computer Networks & ISDN Systems, 1998, 30(98): 107-117. 被引量:1
  • 10DING C H, BUYYA R. Guided Google: a meta search engine and its implementation using the Google distributed Web services[J]. International Journal of Computers & Application, 2004, 10(3). 被引量:1

共引文献56

同被引文献13

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部