期刊文献+

结合CNN和WiFi指纹库的室内定位算法 被引量:9

Indoor Location Algorithm Combining CNN and WiFi Fingerprint Database
下载PDF
导出
摘要 为了提高基于WiFi的室内定位的精度和降低计算时间,本文提出一种卷积神经网络(Convolutional Neural Networks,CNN)结合传统指纹库的室内定位算法.该算法基于接收信号强度指示(Received Signal Strength Indication,RSSI)数据,首先利用卷积神经网络模型,根据实时输入数据预判出待测点的初步位置.在保证了大范围预测的位置大概率正确的前提下,再结合传统指纹库中的指纹点,确定出精确度更高的最终预测位置.实验结果表明,在时效性达到要求的前提下,累计误差在1 m以内的定位精度约有65%,累计误差在1.5 m以内的定位精度约有85%,且误差较为稳定. In order to improve the accuracy of WiFi-based indoor positioning and reduce the calculating time,this study proposes an indoor location algorithm combining Convolutional Neural Networks(CNN)with traditional fingerprint library.Based on the Received Signal Strength Indication(RSSI)data,the algorithm first uses the CNN model to predict the initial position of the measured point according to the real-time input data.Under the premise that the large-scale prediction position is guaranteed to be correct,the fingerprint points in the traditional fingerprint database are combined to determine the final prediction position with higher accuracy.The results show that the location accuracy of the error within 1 m is about 65%,the location accuracy of the error within 1.5 m is about 85%,and the error is stable under the premise that the timeliness is required.
作者 曹建荣 张旭 武欣莹 吕俊杰 杨红娟 CAO Jian-Rong;ZHANG Xu;WU Xin-Ying;LYU Jun-Jie;YANG Hong-Juan((College of Information and Electrical Engineering,Shandong Jianzhu University,Jinan 250101,China;Shandong Provincial Key of Intelligent Building Technology,Jinan 250101,China)
出处 《计算机系统应用》 2020年第7期173-179,共7页 Computer Systems & Applications
基金 山东省重点研发计划(2019GSF111054,2019GGX104095) 山东省重大科技创新工程(2019JZZY010120)。
关键词 室内定位 数据处理 RSSI 指纹库 卷积神经网络 indoor location data processing RSSI fingerprint library Convolutional Neural Networks(CNN)
  • 相关文献

同被引文献63

引证文献9

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部