期刊文献+

考虑紧急程度的机器学习仿真变道模型

A Machine Learning Based Lane-changing Simulation Model with Consideration of Urgency
下载PDF
导出
摘要 变道模型是微观交通仿真中重要的模块,对其研究具有十分重要的意义。目前提出的变道模型大多采用基于驾驶员思维规则和基于机器学习的建模方法。然而,这些模型都没有考虑紧急程度,并且模型精度较低。引入紧急程度,提出了一种新的基于机器学习的变道模型。通过聚类算法将数据集根据紧急程度进行划分,使用梯度提升决策树在不同紧急程度上的数据集进行学习,得到不同紧急程度下的变道模型。通过实验验证,所提出的基于机器学习的变道模型相较于其他机器学习变道模型有更高的预测精度。最后,基于梯度提升决策树的特征重要度分析表明紧急程度在变道决策过程中具有十分重要的作用。 The lane-changing model is an important module in microscopic traffic simulation,and it is of great significance for its research.Most of the proposed lane change models are based on drivers’thinking and machine learning based modeling methods.However,none of these models consider urgency and the model accuracy is low.This paper introduces urgency and proposes a new machine learning based lane change model.The data set is divided according to the urgency by the clustering algorithm,and the gradient boosting decision tree is used to learn the data sets of different urgency levels,and the lane change model with different urgency degrees is obtained.The experimental results show that the proposed machine learning-based lane change model has higher prediction accuracy than other machine learning lane change models.Finally,based on the analysis of the feature importance of the gradient decision tree,it is shown that the urgency plays an important role in the decision-making process.
作者 李捷 李韬 徐大林 LI Jie;LI Tao;XU Da-lin(Jiangsu Automation Research Institute, Lianyungang 222061, China)
出处 《指挥控制与仿真》 2020年第4期88-92,共5页 Command Control & Simulation
关键词 机器学习 变道模型 紧急程度 GBDT 聚类 交通仿真 machine learning lane-changing model urgency GBDT clustering traffic simulation
  • 相关文献

参考文献6

二级参考文献34

  • 1宋金泽,戴斌,单恩忠,孙振平,贺汉根.融合动力学约束的自主平行泊车轨迹生成方法[J].中南大学学报(自然科学版),2009,40(S1):135-141. 被引量:28
  • 2王荣本,游峰,崔高健,余天宏.车辆安全换道分析[J].吉林大学学报(工学版),2005,35(2):179-182. 被引量:40
  • 3邵信光,杨慧中,陈刚.基于粒子群优化算法的支持向量机参数选择及其应用[J].控制理论与应用,2006,23(5):740-743. 被引量:128
  • 4邹智军.城市道路交通仿真研究[M].上海:同济大学道路与交通工程系,2000.. 被引量:5
  • 5Ahmed KI. Modeling drivers’acceleration and lane changing behavior[D]. Massachusetts Institute of Technology, 1999. 被引量:1
  • 6Zhang Y, Owen L E, Clark J E. A Multi- regime approach for microscopic traffic simulation[C]. Transportation Research Board 77th Annual Meeting. Washington, D. C: Transportation Research Board, 1998: 103-115. 被引量:1
  • 7Wei H, Lee J. Observation-based lane-vehicleassignment hierarchy for microscopic simulation on an urban street network[C]. Transportation Research Board 79th Annual Meeting. Washington , D. C: Transportation Research Board, 2000: 96-103. 被引量:1
  • 8Tomer T. Integrated driving behavior modeling[D]. Cambridge, MA: Massachusetts Institute of Technology, 2003: 18-43. 被引量:1
  • 9Yang Q, Koutsopoulos H N. A microscopic traffic simulator for evaluation of dynamic traffic management systems[J]. Transportation Research Part C: Emerging Technologies, 1996, 4(3): 113-129. 被引量:1
  • 10Hidas P. Modeling vehicle interactions in microscopic simulation of merging and weaving and weavin[J]. Transportation Research Part C: Emerging Technologies, 2005, 13(1): 37-62. 被引量:1

共引文献124

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部