期刊文献+

基于三维光学信息的人体姿态快速测量 被引量:5

Fast measurement of human body posture based on three-dimensional optical information
下载PDF
导出
摘要 汽车中人体姿态三维测量对汽车座椅设计的舒适性评价具有重要的意义。为了快速准确地获取车内人体三维数据,文中采用一种基于双目视觉的立体三维数据获取方法,该方法将结构光与标记点相结合,实现了人体三维点云快速重建以及三维姿态(距离、角度)自动快速测量。实验结果表明,该方法在距离2 m以上,测量范围1.5 m×2 m时,人体姿态测量精度可以达到0.03 mm,满足了汽车人体姿态高精度三维数据采集的需求。与传统的汽车人体姿态三维测量方法相比,文中所使用的三维自动测量方法不仅自动化程度高,而且具有测量精度高、速度快、鲁棒性强的优点。 The three-dimensional measurement of human body posture is of great significance to the comfort evaluation of car seat design.In order to acquire the 3D data of the human body in the car quickly and accurately,a method of 3D data acquisition based on binocular vision was adopted,which combined the structured light with the marked points,and realized the rapid reconstruction of 3D point cloud of the human body and the automatic and rapid measurement of 3D attitude(distance and angle).The experimental results show that when the distance is more than 2 m and the measuring range is 1.5 m×2 m,the measurement accuracy of human body posture can reach 0.03 mm,which meets the demand of high-precision three-dimensional data acquisition of automobile human body posture.Compared with traditional three-dimensional measurement method,the three-dimensional automatic measurement method used in this paper not only has a high degree of automation,but also has the advantages of high accuracy,fast speed and strong robustness.
作者 宋丽梅 黄浩珍 陈扬 朱新军 杨燕罡 郭庆华 Song Limei;Huang Haozhen;Chen Yang;Zhu Xinjun;Yang Yangang;Guo Qinghua(Key Laboratory of Advanced Electrical Engineering and Energy Technology,Tiangong University,Tianjin 300387,China;School of Mechanical Engineering,Tianjin University of Technology and Education,Tianjin 300222,China)
出处 《红外与激光工程》 EI CSCD 北大核心 2020年第6期63-72,共10页 Infrared and Laser Engineering
基金 国家自然科学基金(61905) 天津市高等学校创新团队培养计划(TD1-5036)。
关键词 人体姿态 三维测量 结构光 标记点 human body posture three-dimensional measurement structured light marked points
  • 相关文献

参考文献2

二级参考文献13

  • 1Wang D., Li T., Wang J. L., Fan L. and Liu J. H., Sen- sors & Transducers 172, 111 (2014). 被引量:1
  • 2A. Long, L. Rouet, A. Debreuve, R. Ardon, C. Barbe, J. P. Becquemin and E. Allaire, Ultrasound in Medicine & Biology 39, 1325 (2013). 被引量:1
  • 3WU Bin, SHAO Zhen-yu and ZHANG Yun-hao, Jour- nal of Optoelectronics" Laser 25, 293 (2014). (in Chinese). 被引量:1
  • 4YU Zhi-jing, LIU Yue-lin and ZHUGE Jing-jing, Transducer and Microsystern Technologies 33, 120 (2014). (in Chinese). 被引量:1
  • 5Bartosz Gapinski and Michal Wieczorowski, Procedia Engineering 69, 247 (2014). 被引量:1
  • 6CHEN Hao, ZHU Ji-gui, XIE Hong-bo and WANG Zhong, Journal of Mechanical Engineering 49, 16 (2013). (in Chinese). 被引量:1
  • 7ZHANG Xue-yong, LU Rong-sheng, LI Ping and MA Jian-guo, Optoelectronics Letters 7, 294 (2011). 被引量:1
  • 8Qiucheng Sun, Yueqian Hou, Qingchang Tan and Chunjing Li, Optics and Lasers in Engineering 55, 183 fgl) 1 z. 被引量:1
  • 9Shir-Kuan Lin and Shih-Wei Yang, Optics and Laser Technology 57, 293 (2014). 被引量:1
  • 10Limei Song, Xiaoxiao Dong, Jiangtao Xi, Yanguang Yu and Chaokui Yang, Optics & Laser Technology 45, 319 (2013). 被引量:1

共引文献3

同被引文献38

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部