期刊文献+

基于异质网络层次注意力机制的基因功能预测 被引量:2

Gene Function Prediction Based on Hierarchical Attention Mechanism in Heterogeneous Network
下载PDF
导出
摘要 基因组测序技术的快速发展使得生物数据库中的基因和基因组序列数据数量迅速增加,但其中仍有大量基因功能是未知的。为此,提出基于异质网络层次注意力机制的基因节点表示学习方法HAGE,用以预测基因功能。结合多种来源的数据集,构建一个具有节点属性的基因功能相关异质网络,在网络中使用层次注意力机制为每一个基因节点学习一个节点嵌入向量,该向量可用于后续的基因功能预测等任务。实验结果表明,与GraphSAGE和GAT等方法相比,HAGE具有更好的预测性能。 The rapid development of genome sequencing has led to the explosive growth of gene and genomic sequence data in biological databases,in which functions of a large number of genes still remain unknown.Therefore,this paper proposes a gene node representation learning method,HAGE,based on hierarchical attention mechanism in heterogeneous network to predict the function of genes.Firstly,a gene function-related heterogeneous network with node attributes is constructed.Then the hierarchical attention mechanism is used in network to enable each gene node to learn a node embedding vector,which can be used for subsequent tasks such as gene function prediction.Experimental results show that the proposed method has better performance than GraphSAGE,GAT and other methods.
作者 万美含 熊贇 朱扬勇 WAN Meihan;XIONG Yun;ZHU Yangyong(School of Computer Science and Technology,Fudan University,Shanghai 200433,China;Shanghai Key Laboratory of Data Science,Shanghai 200433,China;Shanghai Institute of Advanced Communications and Data Science,Shanghai 200433,China)
出处 《计算机工程》 CAS CSCD 北大核心 2020年第7期43-49,共7页 Computer Engineering
基金 国家自然科学基金(U1636207,91546105) 上海市科技发展基金(16JC1400801)。
关键词 基因功能预测 异质信息网络 注意力机制 网络表示学习 网络嵌入 gene function prediction heterogeneous information network attention mechanism network representation learning network embedding
  • 相关文献

参考文献3

二级参考文献11

  • 1李荣,曹顺良,李园园,谭灏,朱扬勇,钟扬,李亦学.基于语义路径覆盖的Gene Ontology术语间语义相似性度量方法[J].自然科学进展,2006,16(7):916-920. 被引量:12
  • 2宋传贵,胡震,袁文涛,狄根红,沈镇宙,黄薇,邵志敏.CHEK2基因c.1100delC与中国人遗传性乳腺癌易感性的关联研究[J].中华医学遗传学杂志,2006,23(4):443-445. 被引量:7
  • 3Meijers-Heijboer H, Wijnen J, Vasen H, et al. The CHEK2 1100delC mutation identifies families with a hereditary breast and colorectal cancer phenotype. Am J Hum Genet, 2003, 72: 1308-1314. 被引量:1
  • 4Rajkumar T, Soumittra N, Nancy NK, et al. BRCA1, BRCA2 and CHEK2 (1100 del C) germline mutations in hereditary breast and ovarian cancer families in South India. Asian Pac J Cancer Prey, 2003,4:203-208. 被引量:1
  • 5Meijers-Heijboer H, Ans VDO, Jan K, et al. Low-penetrance susceptibility to breast cancer due to CHEK2 ( ^*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet,2002, 31:55-59. 被引量:1
  • 6Ashburner M,Ball C A,Blake J A,et al.Gene Ontology:Tool for the Unification of Biology[J].Nature Genet,2000,25(1):25-29. 被引量:1
  • 7Resnik P.Using Information Content to Evaluate Semantic Similarity in a Taxonomy[C] //Proceedings of the 14th International Joint Conference on Artificial Intelligence.[S.l.] :Morgan Kaufmann Publishers,1995:448-453. 被引量:1
  • 8Lin Dekang.An Information-theoretic Definition of Similarity[C] //Proceedings of the 15th International Conference on Machine Learning.[S.l.] :Morgan Kaufmann Publishers,1998:296-304. 被引量:1
  • 9Fr(o)hlich H,Speer N,Poustka A,et al.GOSim--An R-package for Computation of Information Theoretic GO Similarities Between Terms and Gene Products[J].BMC Bioinformatics,2007,(8):166. 被引量:1
  • 10Ruths T,Ruths D,Nakhleh L.GS2:An Efficiently Computable Measure of GO-based Similarity of Gene Sets[J].Bioinformatics,2009,25(9):1178-1184. 被引量:1

共引文献5

同被引文献26

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部