摘要
目的自动式喷涂机喷涂效率和质量较低与其在工作过程中受激产生振动密切相关,需要进行参数振动分析,以提高喷涂机系统的稳定性。方法首先建立喷涂机力臂-喷枪系统的正弦激励悬臂梁的弯扭耦合振动模型,对系统的参变方程进行有限差分离散处理,得到系统的质量和时变刚度矩阵,然后运用时间离散和Matlab振动工具箱进行求解和分析。结果喷涂机系统的固有频率随时间的变化情况近似于正弦,且随着激励振幅和激励频率的增加都有趋于增大。当激励幅度大于3cm时,系统的振动幅值会急剧增加,说明弯扭振动发散,系统趋于不稳定。当激励频率大于150rad/s时为不稳定区域;激励频率小于150 rad/s时系统的大部分区域趋于稳定;同时在激励频率等于95 rad/s附近系统不稳定。结论喷涂机悬臂梁在不同激励参数条件下具有复杂的振动行为,研究其振动特性对提高自动式喷涂机的稳定性和效率具有重要的指导意义。
The work aims to necessarily analyze the parameter vibration to improve the stability of the sprayer system as the problem of low spray efficiency and quality of the automatic sprayer is closely related to the vibration generated during the working process. Firstly, the bending-torsion coupled vibration model for the sine excitation cantilever beam of sprayer arm-spray gun system was established and the finite difference discretization of the system’s parameter variation equation was conducted to obtain the mass and time-varying stiffness matrices of the system. Then, the time discretization and Matlab vibration toolbox was used for solution and analysis. The natural frequency of the sprayer system had a sinusoidal variation trend with the time, and it had a tendency to increase with the increase of excitation amplitude and frequency. When u>3 cm, the vibration amplitude of the system would increase sharply, indicating that the bending-torsion was divergent and the system tended to be unstable. When Ω>150 rad/s, it was unstable;when Ω<150 rad/s, most of the system tended to be stable, and the system was unstable near Ω=95 rad/s. The sprayer cantilever beam has complex vibration behavior under different excitation parameters. It is of great significance to study its vibration characteristics for improving the stability and efficiency of the automatic sprayer.
作者
朱由锋
刘新华
王强
王子博
ZHU You-feng;LIUXin-hua;WANG Qiang;WANG Zi-bo(College of Transportation,Shandong University of Science and Technology,Qingdao 266590,China)
出处
《包装工程》
CAS
北大核心
2020年第13期223-230,共8页
Packaging Engineering
基金
山东省重点研发计划(公益类科技攻关)(2019GGX103024)。
关键词
喷涂机
悬臂梁
有限差分
参数振动
正弦激励
sprayer
cantilever beam
finite difference
parameter vibration
sine excitation