摘要
针对移动机器人在复杂环境中使用单一传感器进行同时定位与建图存在的精度不足、扫描范围有限等问题,提出一种将激光雷达与Kinect深度相机两种传感器数据融合的方法。首先对Kinect深度数据进行降维处理,然后使用卡尔曼滤波对激光数据与Kinect深度数据进行融合,在建图阶段使用贝叶斯估计将激光雷达与Kinect各自生成的二维局部栅格地图进行融合。通过实验表明,该方法获得的地图包含更加丰富的环境信息,有助于后续的导航避障工作。
In view of the problems of insufficient precision and limited scanning range for mobile robots using a single sensor for simultaneous positioning and mapping in a complex environment,this paper proposes a method of fusing data from two sensors,lidar and Kinect depth camera.The dimensionality reduction is performed on the Kinect depth data,and then the Kalman filter is used to fuse the laser data with the Kinect depth data.In the mapping stage,Bayesian estimation is used to fuse the two-dimensional local grid maps generated by lidar and Kinect.Experiments show that the map obtained by this method contains richer environmental information,which is helpful for the subsequent navigation and obstacle avoidance work.
作者
张恒
徐万红
张禹
ZHANG Heng;XU Wanhong;ZHANG Yu(School of Mechanical Engineering,Shenyang University of Technology,Shenyang 110870,Chin)
出处
《机械工程师》
2020年第7期22-24,29,共4页
Mechanical Engineer