期刊文献+

考虑DVS的光伏系统GHS短期电压稳定性设计 被引量:1

Short Term Voltage Stability Design of Photovoltaic System GHS Considering DVS
下载PDF
导出
摘要 为降低光伏系统与电力系统并网所引起的电网稳定性恶化问题,提出一种考虑注入电流限制动态电压支撑能力(Dynamic Voltage Support capability, DVS)的光伏系统高斯和声搜索(Gaussian Harmony Search, GHS)短期电压稳定性设计方法。首先,将光伏系统表示成逆变器、故障穿越(Fault Ride-through, FRT)和DVS的能力模型,与传统的DVS性能相比,该方法采用有功和无功注入,提高了系统的短期电压稳定性;其次,引入和声搜索算法对模型参数进行优化,同时为了提高该算法的优化性能,利用高斯遍历性进行算法性能的改进;最后,通过在光伏电力系统仿真实例上的实验研究,显示所提方法可有效缓解光伏系统中断引起的故障后的频率下降问题,提升光伏系统的短期电压稳定性。 In order to reduce the deterioration of power grid caused by grid connection between photovoltaic system and power system, a novel method for designing short term voltage stability of photovoltaic systems, called Gauss harmonic search(GHS), considering the injection current limitation and the dynamic voltage support capability(DVS) is proposed. Firstly, the photovoltaic system is represented as inverter, fault ride-through(FRT) model and DVS, compared with the traditional method of DVS performance, use active power and reactive power injection to improve the short-term voltage stability of the system;Secondly, the harmony search algorithm is introduced to optimize the model parameters. At the same time, in order to improve the optimization performance of the algorithm, the Gauss ergodicity is used to improve the performance of the algorithm;Finally, the simulation results of the photovoltaic power generation system show that the method is feasible,effectively alleviates the interruption caused by the frequency drop after the failure of the photovoltaic system,and improve short-term voltage stability of photovoltaic system.
作者 刘奇 吕霏 吴文兵 史吏 刘福涛 LIU Qi;LV Fei;WU Wen-bing;SHI Li;LIU Fu-tao(State Grid Liaocheng Electric Power Company,Liaocheng 252000,China)
出处 《控制工程》 CSCD 北大核心 2020年第6期1062-1069,共8页 Control Engineering of China
关键词 电流限制 光伏系统 动态电压支撑能力 短期电压稳定 高斯遍历 Current limit photovoltaic system dynamic voltage support capability short term voltage stability Gauss ergodic
  • 相关文献

参考文献5

二级参考文献39

  • 1熊志辉,李思昆,陈吉华.具有初始信息素的蚂蚁寻优软硬件划分算法[J].计算机研究与发展,2005,42(12):2176-2183. 被引量:9
  • 2LIU T,XU G,CAI P. Development forecast of renewable energy power generation in China and its influence on the GHG con- trol strategy of the country [J ]. Renewable Energy,2011,36 (2) : 1284-1292. 被引量:1
  • 3LIU L Q,WANG Z X,ZHANG H Q. Solar energy development in China-a review[J]. Renewable and Sustainable Energy Reviews, 2010,14(1 ) :301-311. 被引量:1
  • 4REIKARD G. Predicting solar radiation at high resolutions:a comparison of time series forecasts[J]. Solar Energy,2009,83(3): 342-349. 被引量:1
  • 5SHI J,LI W J,LIU Y Q,et al. Forecasting power output of photovoltaic systems based on weather classification and support vector machines[J]. IEEE Transactions on Industry Applications, 2012,48(3) : 1064-1069. 被引量:1
  • 6LI Y L,WOLFS P J. A hybrid model for residential loads in a distribution system with high PV penetration[J]. IEEE Transac- tions on Power Systems,2013,28(3):3372-3379. 被引量:1
  • 7LIU Y Q,SHI J,YANG Y P,et al. Short-term wind-power pre- diction based on wavelet transform-support vector machine and statistic-characteristics analysis[J]. IEEE Transactions on In- dustry Applications, 2012,48 (d) : 1136-1141. 被引量:1
  • 8CHOU C T,TANG W L,TAI Y. Effect of substrate temperature on orientation of subphthalocyanine molecule in organic photo- vohaic cells[J]. Thin Solid Films,2012,520(6):2289-2292. 被引量:1
  • 9ALVAREZ M A,LUENGO D,LAWRENCE N D. Linear latent force models using gaussian processes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35 ( 11 ) : 2693-2705. 被引量:1
  • 10SORIA-OLIVAS E,GOMEZ-SANCHIS J,JARMAN I H,et al BELM:bayesian extreme learning machine[J]. IEEE Transac- tions on Neural Networks,2011,22(3):505-509. 被引量:1

共引文献19

同被引文献20

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部