期刊文献+

Multifunctional peptide conjugated amphiphilic cationic copolymer for enhancing ECs targeting, penetrating and nuclear accumulation

原文传递
导出
摘要 Gene therapy has drawn great attention in the treatments of many diseases,especially for cardiovascular diseases.However,the development of gene carriers with low cytotoxicity and multitargeting function is still a challenge.Herein,the multitargeting REDV-G-TATG-NLS peptide was conjugated to amphiphilic cationic copolymer poly(e-caprolactone-co-3(S)-methyl-morpho-line-2,5-dione)-g-polyethyleneimine(PCLMD-g-PEI)via a heterobifunctional orthopyridyl disulfde-poly(ethylene glycol)-N-hydroxysuccinimide(OPSS-PEG-NHS)linker to prepare PCLMD-g-PEI-PEG-REDV-G-TAT-G-NLS copolymers with the aim to develop the gene carriers with low cytotoxicity and high transfection efficiency.The multitargeting micelles were prepared from PCLMD-g-PEI-PEG-REDV-G-TAT-G-NLS copolymers by self-assembly method and used to load pEGFP-ZNF580 plasmids(pDNA)to form gene complexes for enhancing the proliferation and migration of endothelial cells(ECs).The loading pDNA capacity was proved by agarose gel electrophoresis assay.These multitargeting gene com-plexes exhibited low cytotoxicity by 3-(4,-dimethylthia-zol-2-yl)-2,5-diphenyltetrazolium bromide assay.The high internalization efficiency of these gene complexes was confirmed by flow cytometry.The results of in vitro transfection demonstrated that these multitargeting gene complexes possessed relatively high transfection effi-ciency.The rapid migration of ECs transfected by these gene complexes was verified by wound healing assay.Owing to ECs-targeting ability,cell-penetrating ability and nuclear targeting capacity of REDV-G-TAT-G-NLS pep-tide,the multitargeting polycationic gene carrier with low cytotoxicity and high transfection efficiency has great potential in gene therapy.
出处 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2020年第5期889-901,共13页 化学科学与工程前沿(英文版)
基金 This project was supported by the National Natural Science Foundation of China(Grant Nos.51673145,51873149,21875157 and 51963018) the National Key Research and Development Program of China(Grant No.2016YFC1100300) the International Science and Technology Cooperation Program of China(Grant No.2013DFG52040).
  • 相关文献

参考文献2

二级参考文献2

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部