期刊文献+

基于降维实值ESPRIT的多输入多输出雷达波达方向估计 被引量:2

Reduced⁃dimensional real⁃valued ESPRIT algorithm for direction of arrival estimation in MIMO radar
原文传递
导出
摘要 为了提高多输入、多输出雷达目标角度估计的性能,同时尽可能减轻算法的计算负担,提出了一种用于单基地多输入、多输出雷达波达方向估计的降维实值ESPRIT算法。首先,通过降维变换将高维接收数据转换到低维空间;再利用反射信号的特性,将观测数据的实部和虚部拼接从而构造出元素加倍的实值观测数据矢量;然后,在降维空间中构建扩展导向矩阵的实值旋转不变关系;最后,通过求解实值旋转不变方程来获得目标方位的估计。与常规ESPRIT算法相比,该算法可以获得更好的角度估计性能,同时具有更低的运算复杂度。仿真结果证明了本文算法的有效性。 In order to improve the performance of angle estimation in Multi-Input Multi-Output(MIMO)radar and reduce the computational burden,this paper proposes a reduced-dimensional real-valued ESPRIT algorithm for Direction-of-Arrive(DOA)estimation in monostatic MIMO radar.First,the reduced-dimensional transformation is used to transform the received data into a lower-dimensional space.Second,the real and imaginary parts of the received data are spliced by taking advantage of the characteristic of the reflected signal to construct a real-valued observation data vector in which the number of elements is doubled.Third,the real-valued rotational invariance relationship of the extended steering matrix is constructed.Finally,the DOAs are obtained by solving the real-valued rotational invariance equation.Compared with the conventional ESPRIT algorithm,this algorithm can obtain better angle estimation performance with greatly reduced computational complexity. Simulation results demonstrate theeffectiveness of the proposed algorithm.
作者 徐丽琴 李勇 付银娟 刘有耀 林一繁 XU Li-qin;LI Yong;FU Yin-juan;LIU You-yao;LIN Yi-fan(School of Electronics and Information,Northwestern Polytechnical University,Xi'an 710072,China;School of Electronic Engineering,Xi′an University of Posts and Telecommunications,Xi'an 710121,China)
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第3期1113-1119,共7页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(61874087,61602377).
关键词 通信技术 多输入多输出雷达 波达方向估计 信号参数估计 降维变换 communication technology multi-input multi-output radar direction of arrival(DOA)estimation estimation of signal parameters reduced-dimensional transformation
  • 相关文献

参考文献2

二级参考文献12

共引文献5

同被引文献24

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部