期刊文献+

GAN-based data augmentation of prohibited item X-ray images in security inspection 被引量:1

原文传递
导出
摘要 Convolutional neural networks(CNNs)based methods for automatic discriminant of prohibited items in X-ray images attract attention increasingly.However,it is difficult to train a reliable CNN model using the available X-ray security image databases,since they are not enough in sample quantity and diversity.Recently,generative adversarial network(GAN)has been widely used in image generation and regarded as a power model for data augmentation.In this paper,we propose a data augmentation method for X-ray prohibited item images based on GAN.First,the network structure and loss function of the self-attention generative adversarial network(SAGAN)are improved to generate the realistic X-ray prohibited item images.Then,the images generated by our model are evaluated using GAN-train and GAN-test.Experimental results of GAN-train and GAN-test are 99.91%and 98.82%respectively.It implies that our model can enlarge the X-ray prohibited item image database effectively.
作者 ZHU Yue ZHANG Hai-gang AN Jiu-yuan YANG Jin-feng 朱越;张海刚;安久远;杨金锋(Tianjin Key Lab for Advanced Signal Processing,Civil Aviation University of China,Tianjin 300300,China;Institute of Applied Articial Intelligence of the Guangdong-Hong Kong-Macao Greater Bay Area,Shenzhen Polytechnic,Shenzhen 518055,China)
出处 《Optoelectronics Letters》 EI 2020年第3期225-229,共5页 光电子快报(英文版)
基金 the National Natural Science Foundation of China(No.61806208) the Fundamental Research Funds for the Central Universities(No.3122018S008) the Tianjin Education Committee Research Project(No.2018KJ246).
  • 相关文献

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部