期刊文献+

基于深度学习的多目标识别在移动智能体中的应用 被引量:3

Application of Multi-object Detection Based on Deep Learning in Mobile Agents
下载PDF
导出
摘要 随着人工智能的快速发展,机器人领域的一些先进技术的发展和进步已经对许多工业生产和社会发展做出了巨大的贡献。移动机器人的自主性是一个关键问题,一个完全自主的移动机器人必须具备对环境信息的认知能力以及遇到障碍物时的避障能力,因此,多目标识别就变得非常关键。论文借鉴先进的深度学习研究成果,优化并应用于ROS平台的移动智能体。以YOLO网络结构为基础,结合移动智能体的处理平台以及移动过程中实时性的要求,对网络模型进行改进优化。改进后的网络在确保精确度的前提下显著提高处理帧率,满足移动智能体的实时性要求。 With the rapid development of artificial intelligence,the development and progress of some advanced technologies in the field of robotics have made tremendous contributions to many industrial production and social development.The autonomy of mobile robot is a key problem.A fully autonomous mobile robot must have the ability to recognize the environmental information and avoid obstacles when encountering obstacles.Therefore,Multi-object detection becomes very important.This paper uses advanced deep learning research results to optimize and apply mobile agents in ROS platform.Based on YOLO network structure,combined with the processing platform of mobile agent and the real-time requirement of mobile process,the network model is improved and optimized.The improved network can significantly improve the frame rate and meet the real-time requirement of mobile agent under the premise of ensuring accuracy.
作者 陈浩 刘镇 CHEN Hao;LIU Zhen(School of Computer,Jiangsu University of Science and Technology,Zhenjiang 212000)
出处 《计算机与数字工程》 2020年第5期1108-1113,共6页 Computer & Digital Engineering
关键词 深度学习 多目标识别 智能体 机器人操作系统 deep learning multi-object detection agent robot operating system
  • 相关文献

参考文献10

二级参考文献19

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2Kerr J, Nickels K. Robot operating systems: Bridging the gap between human and robot [ C~//System Theory (SSST), 2012 44th Southeastern Symposium on. IEEE, 2012:99 - 104. 被引量:1
  • 3Gerkey B, Vaughan R T, Howard A. The player/stage pro- ject: Tools for muhi-robot and distributed sensor systems [ C ]//Proceedings of the llth internationalconference on advanced robotics 2003, 2003:317 - 323. 被引量:1
  • 4Sellami L, Ngo H, Fowler C J, et al. Near-infrared face recognition utilizing open CV software[ C]//SPIE Defense + Security. International Society for Optics and Photnnics, 2014 : 90703H - 90703H - 9. 被引量:1
  • 5Diankov R, Kuffner J. Openrave: A planning architecture for autonomous robotics[ J ]. Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-08 - 34, 2008 : 79 - 80. 被引量:1
  • 6Brandon Alexander, Kaijen Hsiao, Chad Jenkins, et al. Ro- bot Web Tools [ J ]. Robotics & Automation Magazine, 1EEE. 2012. vol. 19:20 - 23. 被引量:1
  • 7Quigley M, Conley K, Gerkey B, et al. ROS: an open- source Robot Operating System [ C ]//ICRA workshop on open source software. 2009, 3 (3.2) : 5 - 6. 被引量:1
  • 8Ferenc G, Dimic Z, Lutovac M, el al. OPEN ARCHITEC- TURE PLATFORMS FOR THE CONTROL OF ROBOTIC SYSTEMS AND A PROPOSED REFERENCE ARCHITEC- TURE MODEL[ J ]. Transactions of FAMENA, 2013, 37 (1): 89-100. 被引量:1
  • 9Makhal A, Raj M, Singh K, et al. Path planning through maze routing for a mobile robot with mmholonomic con- straints [ C ]//Ubiquitous Robots and Ambient Intelligence (URAI), 2012 9th International Conference on. IEEE, 2012:325-331. 被引量:1
  • 10Hoske M T. ROS Industrial aims to open, unify advanced robotic programming[ J ]. Control Engineering,2013,60 ( 2 ) : 20-21. 被引量:1

共引文献301

同被引文献22

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部