期刊文献+

网壳结构地震反应分析的振型刚度法 被引量:1

Modal stiffness method for seismic response analysis of latticed shells
下载PDF
导出
摘要 提出振型刚度的概念,通过理论推导,建立振型刚度与结构振型特性之间的关系.基于振型刚度,通过推覆分析构建非线性能力曲线,该曲线能够考虑结构整体响应而非依赖于特定节点和特征响应.提出等效线性化迭代方法,结合地震反应谱,克服双线性模型实际耗能不一致的缺点,快速提高目标位移的求解精度.在此基础上,建立网壳结构地震反应分析振型刚度法(MSPA).采用时程分析法(RHA)、传统推覆法(MPA)和振型刚度法(MSPA)计算球面网壳和柱面网壳算例的地震响应,研究结果表明:振型刚度法能较准确地预测结构节点位移、单元应力以及屈服杆件个数,计算精度满足工程要求,大大缩减了计算耗时. The modal stiffness was proposed;the relationship between the modal stiffness and the modal dynamic property was derived and built.Based on the modal stiffness,the nonlinear capacity curve was depicted via the pushover analysis,which could consider the overall responses instead of relying on specific node and characteristic response.In order to overcome the drawback of unequal energy dissipation within the bi-linearized model,an equivalent linearized iterative approach combined with seismic response spectrum was presented to improve the solving accuracy of target displacement of the structure.Thus,the modal stiffness pushover analysis(MSPA)method was established.The seismic responses of a spherical latticed shell and a cylindrical latticed shell were calculated by means of response history analysis(RHA),conventional modal pushover analysis(MPA),and MSPA methods.Results demonstrate that the nodal displacements,element stresses,as well as the quantities of yielding members can be predicted precisely by MSPA method,and the time consumption is greatly reduced.
作者 曲扬 罗永峰 朱钊辰 黄青隆 QU Yang;LUO Yong-feng;ZHU Zhao-chen;HUANG Qing-long(College of Civil Engineering,Tongji University,Shanghai 200092,China;The Third Construction Co.Ltd of China Construction Eighth Engineering Division,Nanjing 210046,China)
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第6期1068-1077,共10页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(51378379).
关键词 网壳结构 振型刚度 推覆分析 地震反应评估 latticed shell modal stiffness pushover analysis seismic response estimation
  • 相关文献

参考文献5

二级参考文献68

共引文献29

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部