期刊文献+

参数未知的新超混沌Volta’s系统的自适应同步 被引量:3

Adaptive synchronization of a new hyperchaotic Volta’s system with uncertaing parameters
下载PDF
导出
摘要 在Volta’s系统的基础上通过添加线性控制器得到一个新的超混沌系统.利用分统计岔图、Lyapunov指数谱和相图研究新系统随参数变化的超混沌和混沌行为,运用Lyapunov稳定定理和自适应控制理论,实现了参数未知的两个超混沌系统的同步.计算机仿真结果验证了提出的方法的正确性和有效性. A new hyperchaotic system based on Volta’s system is presented via adding linear control.The hyperchaotic behavior and chaotic behavior of this new 4D Volta’s system are studied by Bifurcation diagram,Lyapunov exponents spectrum and phase diagram.The hyperchaotic behavior and chaotic behavior of this new 4D Volta’s system with varying parameters are studied by Bifurcation diagram,Lyapunov exponents spectrum and phase diagram.Then,the Lyapunov stability theorem and the adaptive control theory are both employed to realize synchronization of the two hyperchaos with unknown parameters.Our simulation results have demonstrated effectiveness and validity of the proposed method.
作者 张志明 张一帆 李天增 ZHANG Zhi-ming;ZHANG Yi-fan;LI Tian-zeng(College of Software, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;College of Intelligent Manufacturing and Automation, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;School of Science, Sichuan University of Science and Engineering, Zigong 643000, China)
出处 《兰州理工大学学报》 CAS 北大核心 2020年第3期150-154,共5页 Journal of Lanzhou University of Technology
基金 四川省教育厅项目(18ZA0342) 河南省重大科技专项(161100510200,161100110900)。
关键词 超混沌系统 反馈控制 LYAPUNOV指数谱 hyperchaotic system feedback control Lyapunov exponents spectrum
  • 相关文献

参考文献6

二级参考文献36

  • 1PODLUBNY I. Fractional differential equations [M]. San Die- go: Academic Press, 1999. 被引量:1
  • 2MATSUMOTO T, CHUA L O, KOBAYASHI K. Laboratory experiment and numerical confirmation [J]. IEEE Trans Cir- cuits System, 1986,33 : 1143-1147. 被引量:1
  • 3JIA Q. Generation and suppression of a new hyperchaotic sys- tem with double hyperchaotie attractors[J]. Phys Lett A, 2007,371 : 410-415. 被引量:1
  • 4CAI G, TAN Z, ZHOU W, et al. The dynamical analysis and control of a new chaotic system [J]. Aeta Phys Sin, 2007,56: 6230-6237. 被引量:1
  • 5JIANG P Q, WANG B H, BU S L, et al. Hyperehaotic syn- chronization in deterministic small-world dynamical networks [J]. Int J Mod Phys B, 2004,18: 2674-2681. 被引量:1
  • 6DUARTE F B M, MACADO J A T. Chaotic phenomena and fractional dynamics in the trajectory control of redundant ma- nipulators [J]. Nolinear Dyn, 2002,29 : 315-342. 被引量:1
  • 7SUN H H, ABDELWAHAD A A, ONARAL B. Linear ap- proximation of transfer function with a pole of tractional order [J]. IEEE Trans Automat Control, 1984,29(5) : 441-444. 被引量:1
  • 8KOELLER R C. Application of fractional calculus to the theory of viscoelasticity [J]. J Appl Mech, 1984,51 : 299-307. 被引量:1
  • 9ZHOU X,WU Y, I.I Y, et al. Adaptive control and synchroni- zation of a novel hyperchaotie system with uncertain parame ters [J]. Appl Math Comput, 2008,203 : 80-85. 被引量:1
  • 10LIT Z, WANG Y, YANG Y. Synchronization of fractional-or der hyperchaotic systems via fractional-order controllers[J]. Discrete Dynamics in Nature and Society, 2014, 2014: 4089721-40897215. 被引量:1

共引文献32

同被引文献13

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部