期刊文献+

事件触发网络化控制系统在攻击下的稳定性分析 被引量:3

Stability analysis of event-triggered networked control systems under attack
下载PDF
导出
摘要 以存在网络延迟的NCSs为研究对象,结合事件触发机制,研究遭受拒绝服务攻击(DoS)的NCSs稳定性问题。在DoS攻击过程中,NCSs的传感器无法接收测量信息或者执行器无法获取控制信息,会存在不稳定的子系统。为了提高NCSs的稳定性,首先,把存在网络时延和DoS攻击的NCSs系统建模成包含稳定子系统和不稳定子系统的闭环切换系统模型;接着,基于切换系统分析方法,得到该系统指数稳定的充分条件;进一步,分析DoS攻击的时间比率,只要DoS攻击时间比例在有效范围,不论DoS攻击如何作用于系统,总能保证该系统的指数稳定性。实验结果表明,当0<δ<3时,网络控制系统能获得相应的指数稳定性,验证了此方法在DoS攻击下,具有事件触发机制NCSs稳定的有效性。 This paper takes networked control systems(NCSs) with network-induced delay as the research object, combined with the event-triggered mechanism, which studies the stability of NCSs under denial of service(DoS) attacks. In the process of DoS attacks, the sensor of NCSs cannot receive the measurement information in time, or the actuator cannot get the control information, then there will be unstable subsystems. In order to improve the stability of NCSs, firstly, NCSs is modeled as a closed-loop switched system with both stable subsystems and unstable subsystems. The model can handle of network-induced delay and DoS attacks uniformly. Then, based on the analysis method of the switched system, a sufficient condition is derived from the concerned NCSs to be exponentially stable. Furthermore, the time ratio of the DoS attack is also analyzed, the concerned NCSs is always guaranteed to be exponentially stable, as long as the occurring probability of DoS attacks is in the effective range. Finally, the experimental results show that NCSs can obtain the corresponding exponential stability for 0<δ<3;the stability of NCSs with event-triggered mechanism under the DoS attack is given to show the effectiveness of the proposed result.
作者 申玉斌 费敏锐 Shen Yubin;Fei Minrui(School of Information Engineering,Henan University of Animal Husbandry and Economy,Zhengzhou 450044,China;School of Mechatronics Engineering and Automation,Shanghai University,Shanghai 200444,China)
出处 《电子测量与仪器学报》 CSCD 北大核心 2020年第3期51-57,共7页 Journal of Electronic Measurement and Instrumentation
基金 国家自然科学基金(61633016)资助项目。
关键词 DOS攻击 网络化控制系统 事件触发 安全性 指数稳定性 WIRTINGER不等式 denial of service(DoS)attacks networked control systems(NCSs) event-triggered security exponential stability Wirtinger-based inequality
  • 相关文献

参考文献4

二级参考文献42

  • 1Weihua DENG,Jinhu LU,Changpin LI.STABILITY OF N-DIMENSIONAL LINEAR SYSTEMS WITH MULTIPLE DELAYS AND APPLICATION TO SYNCHRONIZATION[J].Journal of Systems Science & Complexity,2006,19(2):149-156. 被引量:5
  • 2CARLI R, ZAMPIERI S. Network clock synchronizationbased on the second-order linear consensus algorithm[ J].IEEE Transactions on Automatic Control,2014,59 ( 2 ):409- 422. 被引量:1
  • 3LI D Q, LIU Q P, WANG X F, et al. Consensus seekingover directed networks with limited information communi-cation[ J]. Automatica, 2013,49(2) : 610-618. 被引量:1
  • 4LI D Q, LIU Q P,WANG X F, et al. Quantized consensusover directed networks with switching topologies [ J ]. Sys-tems and Control Letters, 2014,65: 13-22. 被引量:1
  • 5HE J P,CHENG P, SH L, et al. Time synchronization inWSNs: A maximum-value-based consensus approach [ J ].IEEE Transactions on Automatic Control, 2014, 59 (3):660-675. 被引量:1
  • 6HE J P, LI H, CHEN J M, et al. Study of consensus-basedtime synchronization in wireless sensor networks [ J ]. ISATransactions, 2014,53(2) : 347-357. 被引量:1
  • 7CARIi R, CHIUSO A,SCHENATO L, et al. API consen-sus controller for networked clocks synchronization [ C ]. IF-AC World Congress on Automatic Control, 2008. 被引量:1
  • 8GUO G, DING L,HAN Q L. A distributed event- trig-gered transmission strategy for sampled-data consensus ofmulti-agent systems [ J ]. Automatica, 2014, 50(5):1489-1496. 被引量:1
  • 9SHI D W, CHEN T W, SHI L. An event-triggered ap-proach to state estimation with multiple point and set-val-ued measurements[ J]. Automatica, 2014,50(6) : 1641-1648. 被引量:1
  • 10ZHANG X, CHEN M Y. Event-triggered consensus forsecond-order leaderless multi-agent systems [ C ] . The25th Chinese Control and Decision Conference ( CCDC),2013; 4395-4399. 被引量:1

共引文献32

同被引文献35

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部