期刊文献+

基于分位数回归森林的VaR估计及风险因素分析 被引量:4

VaR estimation based on quantile regression forest and risk factors analysis
下载PDF
导出
摘要 构建非参数、集成性的分位数回归森林算法,对上证综指和标普500指数的VaR进行了估计;同时构建了其他一些主流的方法,包括历史模拟、GARCH族方法、弹性网络、门限分位数回归、CAViaR等,进行检验和对比.通过对不同置信水平下的VaR估计进行多种检验,验证了该方法的有效性和稳健性.进一步,基于分位数回归森林模型定义了一种特征重要性度量方法,评估了各个因素对于风险值的影响权重大小,发现过去一日收益率对上证综指的风险值影响较大,而波动率对标普500指数的风险值影响较大,整体来看两国股市间的风险传导性较弱;并引入偏相依关系,动态地分析了各个因素在不同水平下对于风险值的作用方向,一定程度上弥补了机器学习算法在金融应用中一直存在的“黑箱性”问题. Quantile regression forests as a nonparametric and ensemble method were built to estimate the VaR of Shanghai Composite Index and the S&P 500 Index at different confidence levels.Meanwhile,other methods were built for comparison,including historic simulation,GARCH,elastic net,threshold quantile regression model and CAViaR,and the superiority of the proposed method was verified.Further,a new measurement method of variable importance based on the quantile regression forest was defined to judge the importance of various factors on the risk value,and it was discovered that the past one day yield has the greatest influence on the risk value of the Shanghai Composite Index,and that the volatility has the greatest influence on S&P 500 Index risk value.At the same time,the risk conduction between China and US is weak.Further,by dynamically analyzing the partial dependence between the factors and risk value,the“black box”problem of machine learning used in financial applications has been remedied to some extent.
作者 苟小菊 王芊 GOU Xiaoju;WANG Qian(School of Management, University of Science and Technology of China, Hefei 230026, China)
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2019年第8期635-644,共10页 JUSTC
基金 国家自然科学基金青年项目(71701191)资助。
关键词 分位数回归森林 在险价值 风险因素分析 quantile regression forest VaR risk factor analysis
  • 相关文献

参考文献6

二级参考文献73

  • 1王新宇,宋学锋,吴瑞明.基于AAVS-CAViaR模型的股市风险测量研究[J].系统工程学报,2010,25(3):326-333. 被引量:13
  • 2Markowitz H. M., 1952, Portfolio Selection [J], Journal of Finance, 7 (1), 3, 77~91. 被引量:1
  • 3Artzner P., F. Delbaen J. M. Eber, and D. Heath, 1999, Coherent Measures o fRisk [J], Mathematical Finance, 4 (3), 7, 203~228. 被引量:1
  • 4Acerbi C. , and D. Tasche, 2002, On the Coherence of Expected Shortfall [J], Journal of Banking Finance, 26 (7), 7, 1487~1503. 被引量:1
  • 5Cheng, S., Y. Liu, S. Wang, 2004, Progress in Risk Measurement [J]. Advanced Modelling and Optimization, 6 (1), 1~20. 被引量:1
  • 6Manganelli S. , and R.F. Engle, Value at Risk Models in Finance[R], Working Paper, 2001. 被引量:1
  • 7Koenker R., and G. Baasett, 1978, Regression Quantiles [J], Econometrica, 46 (1), 33~50. 被引量:1
  • 8Koenker R. , and Park B. J. , 1996, An Interior Point Algorithm for Nonlinear Quantile Regression [J], Journal of Econometrics, 71 (1~2), 3~4, 265~283. 被引量:1
  • 9Engle R. F. , and S. Manganelli, 2004, CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles [J], Journal of Business and Economic Statistics, 22 (4), 10, 367~381. 被引量:1
  • 10Taylor J. W. , 2008, Estimating Value at Risk and Expected Shortfall Using Expectiles [J]. Journal of Financial Econometrics, 6 (2), 9, 231~252. 被引量:1

共引文献34

同被引文献27

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部