期刊文献+

基于遗传算法优化BP神经网络的华北型煤田矿压破坏带深度预测 被引量:10

Depth Prediction of Mining Pressure Failure Zone in North China Coalfield Based on BP Neural Network Optimized by Genetic Algorithm
原文传递
导出
摘要 为防治煤层底板水害,在总结矿压破坏带深度预测方法和理论的基础上,分析了影响矿压破坏深度的各项因素,选取华北型石炭二叠系煤田典型工作面综采条件下的矿压破坏深度实测数据;通过运用MATLAB软件对实测数据进行训练和拟合验证,构建了基于遗传算法优化BP神经网络的矿压破坏带深度预测模型。经过对比传统人工神经网络模型,优化模型与实际吻合更好,预测精度更高。基于MATLAB进一步开发了可视化预测预报系统,使得操作更为便捷。研究成果为防治煤层底板水害提供了技术支撑和依据。 In order to prevent and control the water damage of the coal seam floor,the methods and theory were summarized for the depth prediction of the mining pressure failure zone.On this basis,the factors affecting the depth of the mining pressure failure zone were analyzed,and the measured data of the depth of the mining pressure failure zone at the typical working face in the North China Carboniferous Permian coalfield under comprehensive mining conditions was selected.Then,Matlab software was used to train and fit the measured data,and a depth prediction model of mining pressure failure zone was constructed based on genetic algorithm optimization BP neural network.Compared with the traditional artificial neural network model,the optimized model was better in accordance with the actual situation,and the prediction accuracy was higher.Based on MATLAB,a visual prediction system was further developed,which made the operation more convenient.The research results can provide a technical support and basis for the prevention and control of water disaster in coal seam floor.
作者 赵铭生 刘守强 纪润清 刘德民 曹欢 胡棉舒 ZHAO Mingsheng;LIU Shouqiang;JI Runqing;LIU Demin;CAO Huan;HU Mianshu(National Engineering Research Center of Coal Mine Water Hazard Control,Beijing 100083,China;Co liege of Geosciences and Surveying Engineering,China University of Mining and Technology(Beijing),Beijing 100083,China;Datong Coal Mine Group Company,Datong,Shanxi 037000,China;Hebei State Key Laboratory of Mine Disaster Prevention,North China Institute of Science and Technology,Beijing 101601,China)
出处 《矿业研究与开发》 CAS 北大核心 2020年第6期89-93,共5页 Mining Research and Development
基金 国家自然科学基金项目(41602262,41572222) 国家重点研发计划项目(2017YFC0804104) 河北省矿井灾害防治重点实验室开放基金项目(KJZH2017K05) 中央高校基本科研业务费专项资金项目(2013QD04) 中国矿业大学(北京)大学生创新训练项目(C201802762).
关键词 华北型煤田 矿压破坏带 遗传算法 人工神经网络 可视化 North China coalfield Zone destroyed by underground pressure Genetic algorithm Artificial neural network Visualization
  • 相关文献

参考文献28

  • 1胡生强..刘庄煤矿A组煤底板突水危险性与涌水分析[D].成都理工大学,2018:
  • 2徐星,孙光中,田坤云.GA-BP神经网络在煤矿突水水源判别中的应用[J].煤炭技术,2018,37(10):172-174. 被引量:12
  • 3方翔宇..孙疃矿10煤深部开采底板破坏规律及突水危险性评价[D].安徽理工大学,2017:
  • 4王健..孙疃矿103采区10煤底板隔水能力及突水危险性研究[D].安徽理工大学,2015:
  • 5李冲..邯邢地区煤层底板破坏规律研究[D].河北工程大学,2011:
  • 6杨松..刘家梁煤矿三软高导升底板突水预测分析研究[D].太原理工大学,2014:
  • 7张缓缓..基于采场损伤的潘北矿A组煤开采底板破坏深度研究[D].安徽理工大学,2016:
  • 8刘利君..潘北矿11113工作面地表移动变形规律研究[D].安徽理工大学,2014:
  • 9李哲,曾一凡,刘守强,宫厚健,牛鹏堃.BP人工神经网络在富水性评价中的应用[J].煤炭工程,2018,50(8):114-118. 被引量:17
  • 10刘存玉,关永强.峰峰集团九龙矿15423N工作面特大突水原因剖析[J].煤矿安全,2013,44(8):187-190. 被引量:7

二级参考文献62

共引文献172

同被引文献210

引证文献10

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部