期刊文献+

采用局部时—频奇异值与优化随机森林的高压断路器机械故障诊断 被引量:13

High Voltage Circuit Breaker Mechanical Fault Diagnosis with Local Time⁃frequency Singular Value and the Optimal Random Forest
下载PDF
导出
摘要 为提高断路器机械振动信号的时—频特征分类能力、减小噪声干扰和提高断路器状态识别的准确性,提出一种基于S变换与优化随机森林算法的高压断路器机械故障诊断方法。首先,对高压断路器原始振动信号进行S变换;然后对S变换得到的时—频矩阵进行局部奇异值分解,以每个子矩阵的最大奇异值为特征向量;之后,将特征向量输入到随机森林中,以泛化误差与诊断准确率为综合指标对树的棵数进行寻优,构建最优随机森林分类器,最终实现对高压断路器机械故障状态的准确判别。对断路器实测振动数据开展对比实验,结果表明,新方法的特征类可分性好,整体故障识别准确性高。 In order to improve the time⁃frequency feature classification ability of circuit breaker mechanical vibra⁃tion signals,reduce noise interference and improve the accuracy of state recognition of circuit breakers,a mechani⁃cal fault diagnosis method for high voltage circuit breaker based on S⁃transform and optimal random forest algorithm is proposed.Firstly,the vibration signal of high voltage circuit breaker is processed by S⁃transform;after that the time⁃frequency matrix obtained by S⁃transform is decomposed by local singular value decomposition,and the maxi⁃mum singular value of each sub⁃matrix is the feature vector;Then,the feature vector is input into the random for⁃est,and the number of trees is synthesized by generalization error and diagnostic accuracy.The optimal random for⁃est classifier is constructed to realize the accurate identification of mechanical fault state of high voltage circuit break⁃er.Comparative experiment is carried out on the measured vibration data of circuit breaker,and the experimental re⁃sults show that the new method has good classification of features and high accuracy of fault identification.
作者 张欣 张静 高旭 任新卓 顾承天 朱玮翔 ZHANG Xin;ZHANG Jing;GAO Xu;REN Xinzhuo;GU Chengtian;ZHU Weixiang(Hangzhou Power Supply Company of State Grid,Hangzhou 310009,China;Department of Electrical Engineering,Northeast Electric Power University,Jilin 132012,China)
出处 《高压电器》 CAS CSCD 北大核心 2020年第6期225-231,共7页 High Voltage Apparatus
基金 国家自然科学基金资助项目(51307020)。
关键词 高压断路器 机械故障诊断 S变换 局部奇异值分解 随机森林 high voltage circuit breaker mechanical fault diagnosis S⁃transform local singular value decomposition random forest
  • 相关文献

参考文献19

二级参考文献213

共引文献563

同被引文献219

引证文献13

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部