期刊文献+

基于Labeled-LDA模型的在线医疗专家推荐研究 被引量:13

Recommending Online Medical Experts with Labeled-LDA Model
原文传递
导出
摘要 【目的】改进现有在线医疗专家推荐模型,提高医生回答健康问题的效率和质量。【方法】基于LabeledLDA模型挖掘健康问题潜在主题,明确医生专长,以提高"问题-医生"匹配度,并使用39健康网的数据进行实验验证。【结果】本文方法的准确率、召回率和回答采纳比分别为40.4%、44.0%和22.9%,而网站现有指标分别为20.4%、29.7%和6.8%。【局限】未考虑医生回答问题的速度和医生的简历等相关信息;不能很好地识别出回答问题过于稀疏的新加入医生的专长。【结论】本研究所提专家推荐方法在评价指标上均超过网站现有指标,具有良好的推荐效果。 [Objective] This paper tries to modify the existing recommendation model for online medical experts,aiming to more effectively address health-related inquiries. [Methods] First, we identified the latent topics of online health questions with the help of Labeled-LDA model. Then, we defined the doctors’ specialties and better match them with questions. Finally, we evaluated the new model with data from http://www. 39. net. [Results]The precision, recall and response adoption rates of the proposed method were 40. 4%, 44. 0% and 22. 9%, which were much higher than those of the existing ones. [Limitations] Our method did not include factors like doctors’ responding time and their resumes. This method could not identify expertise of newly joined doctors who answered few questions. [Conclusions] The proposed model could effectively recommend physicians for patients asking questions online.
作者 潘有能 倪秀丽 Pan Youneng;Ni Xiuli(School of Public Affairs,Zhejiang University,Hangzhou 310058,China)
出处 《数据分析与知识发现》 CSSCI CSCD 北大核心 2020年第4期34-43,共10页 Data Analysis and Knowledge Discovery
基金 浙江省哲学社会科学规划项目“基于领域本体的知识地图构建研究”(项目编号:13ZJQN043YB)的研究成果之一。
关键词 Labeled-LDA 专家推荐 主题模型 在线医疗 Labeled-LDA Expert Recommendation Topic Model Online Healthcare
  • 相关文献

参考文献10

二级参考文献99

  • 1张云涛,龚玲,王永成.基于综合方法的文本主题句的自动抽取[J].上海交通大学学报,2006,40(5):771-774. 被引量:16
  • 2苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:386
  • 3Chen Lin,Nayak R. Expertise analysis in a question answer portal for author ranking[A].Washington,USA,2008.134-140. 被引量:1
  • 4Kao Weichen,Liu Duenren,Wang Shiuwen. Expert finding in question-answering websites:A novel hybrid Approach[A].2010.867-871. 被引量:1
  • 5Riahi F,Zolaktaf Z,Shafiei M. Finding expert users in community question answering[A].{H}Lyon,France,2012.791-798. 被引量:1
  • 6Qu Mingcheng,Qiu Guang,He Xiaofei. Probabilistic question recommendation for question answering communities[A].CM,2009.1229-1230. 被引量:1
  • 7LIU Mingrong,LIU Yicen,YANG Qing. Predicting best answerers for new questions in community question answering[A].Springer Berlin Heidelberg,2010.127-138. 被引量:1
  • 8Jurczyk P,Agichtein E. Discovering authorities in question answer communities by using link analysis[A].Lisboa,Portugal,2007.919-922. 被引量:1
  • 9Jie Shen,Wen Shen,Xin Fan. Recommending experts in Q&A communities by weighted HITS algorithm[A].Chengdu,China,2009.151-154. 被引量:1
  • 10Liu Jing;Song Y I;Lin C Y.Competition-based user expertise score estimation[A]{H}北京,2011425-434. 被引量:1

共引文献347

同被引文献139

引证文献13

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部