摘要
Given that graphene features high electrical conductivity,it is a kind of material with corrosion-promotion activity.This study aimed to inhibit the corrosion-promotion activity of graphene in coatings.Here,we report an exciting application of epoxy matrix(EP)/F-doped reduced graphene oxide(rGO)coatings for the long-term corrosion protection of steel.The synthesized F-doped rGO(FG)did not reduce the utilization of rGO by a wide margin and possessed distinctive electrically insulating nature.The electrical conductivity of rGO was approximately 1500 S/m,whereas those of FG-1,FG-2 and FG-3 were 1.17,5.217×10^−2 and 3.643×10^-11 S/m,respectively.FG and rGO were then dispersed into epoxy coatings.The chemical structures of rGO and FG were investigated by transmission electron microscopy(TEM),scanning probe microscopy(SPM),X-ray photoelectron spectroscopy(XPS),Fourier-transform infrared spectroscopy(FTIR),and X-ray diffraction(XRD).EP/FG coatings exhibited outstanding corrosion protection in comparison with blank EP and EP/rGO coatings mainly because the corrosion-promotion effect of rGO was eliminated.The anticorrosion ability of EP/FG coatingswasimproved with increased F-doped degree of FG.In addition,electrochemical impendance spectroscopy(EIS)results indicated that the Rc values of EP/FG-2 and EP/FG-3 were four orders of magnitude higher than those of EP/rGO in diluent NaCl solution(3.5 wt.%)after immersion for 90 days.
基金
This work was financially supported by the National Natural Science Foundation of China(No.51775540)
the Youth Innovation Promotion Association,CAS(No.2017338)
the Nature Science Foundation of Zhejiang(No.LQ19E030007)
the Natural Science Foundation of Ningbo(No.2018A610114).