期刊文献+

基于协同过滤的连续黑箱优化问题元启发算法选择 被引量:3

Metaheuristic algorithm selection system for continuous black-box optimization problems based on collaborative filtering
原文传递
导出
摘要 算法选择(AS)问题旨在为给定问题在算法集合中选择最佳算法.随着优化算法的不断提出,算法选择问题是优化领域亟待解决的问题.提出基于聚类的元启发算法五星评价体系,将算法性能指标映射至整数评价以减小评价空间.通过测试24种常见优化算法与4种最新CEC大赛优胜算法在219种、3 000多个标准测试问题上的性能,得到评价矩阵.将评价矩阵作为训练数据,使用协同过滤(CF)算法建立算法评价的预测模型.使用该模型预测算法集内的所有算法在新问题上的评价,结果显示所提出方法预测精度较高,超过90%的预测最佳算法为最终可行算法.敏感性分析显示,该方法在先验信息有限的情况下仍可以保持较高的预测精度. Selecting the best algorithm out of an algorithm set for a given problem is referred to as the algorithm selection(AS) problems. The importance of AS problems increases with the emerge of many optimization algorithms.Therefore, a five-star ranking system based on clustering is proposed, which maps the algorithm performance criteria to integers and reduces the ranking space. An algorithm set is prepared, including 24 commonly used optimization algorithms and four algorithms that win the CEC competition in 2016 and 2017. By testing the performance of the selected algorithms on 219 benchmark problems, a ranking matrix is obtained. The ranking matrix is used as the data source of the collaborative filtering(CF) algorithm to obtain a prediction model of algorithm ranking. For a new problem instance, the model predicts the ranking of all the algorithms in the algorithm set. The results show that the prediction accuracy is high, and over 90% of predicted best algorithms are capable of solving the problem instance.Sensitivity analysis shows that the proposed method can still maintain high prediction accuracy with limited prior information.
作者 张永韡 汪镭 ZHANG Yong-wei;WANG Lei(College of Electronics and Information,Jiangsu University of Science and Technology,Zhenjiang 212003,China;College of Electronics and Information Engineering,Tongji University,Shanghai 200092,China)
出处 《控制与决策》 EI CSCD 北大核心 2020年第6期1297-1306,共10页 Control and Decision
基金 国家自然科学基金项目(71371142,71771176) 江苏政府海外留学奖学金项目(JS-2015-200) 镇江市软科学基金项目(2225031701)。
关键词 算法选择 连续优化 黑箱优化 协同过滤 元启发 推荐系统 algorithm selection continuous optimization black-box optimization collaborative filtering metaheuristics recommendation system
  • 相关文献

参考文献1

二级参考文献63

  • 1Quinlan J R.Introduction of decision trees[J].Machine Learning, 1986, 1(1): 81-106. 被引量:1
  • 2Bishop C M.Neural networks for pattern recognition[M].Oxford: Oxford University Press, 1996: 164-191. 被引量:1
  • 3Aha D, Kibler D, Albert M.Instance-based learning algorithm[J].Machine Learning, 1991, 6(1): 37-66. 被引量:1
  • 4Cohen W W.Fast effective rule induction[C].Proc of the 12th Int Conf on Machine Learning.California: Morgan Kaufmann, 1995: 115-123. 被引量:1
  • 5Vapnik V N.The nature of statistical learning[M].New York: Springer, 1995: 123-167. 被引量:1
  • 6Vapnik V N.An overview of statistical learning theory[J].IEEE Trans on Neural Network, 1999, 10(5): 988-999. 被引量:1
  • 7Wolpert D H, Macready W G.No free lunch theorems for search[J].IEEE Trans on Evolutionary Computation, 1997, 1(1): 67-82. 被引量:1
  • 8Mitchell T.Machine learning[M].New York: McGraw-Hill, 1997: 201-225. 被引量:1
  • 9Gordon D F, Desjardins M.Evaluation and selection of biases in machine learning[J].Machine Learning, 1995, 20(1/2): 5-22. 被引量:1
  • 10Rice J R.The algorithm selection problem[J].Advances in Computers, 1976, 15(1): 65-118. 被引量:1

共引文献13

同被引文献55

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部