摘要
托卡马克燃烧等离子体中高能α粒子的损失和输运是聚变实验和模拟研究中的关键问题,纵场磁体分立性导致的磁场波纹扰动可能引起显著的α粒子损失.本文利用粒子导心轨道跟踪程序ORBIT和等离子体输运程序TRANSP/NUBEAM针对中国聚变工程实验堆(CFETR)920 MW混杂运行模式参数进行波纹损失相关的数值模拟,分别考虑了α粒子初始分布、稳态慢化分布、不同碰撞率和不同分布剖面模型,得到了损失份额、损失位置以及局域热负荷等信息,结果显示CFETR混杂运行模式下α粒子波纹损失引起的局域热负荷约为0.13 MW/m2,在聚变堆第一壁安全阈值0.5 MW/m2允许范围内,本文还分别从物理和工程角度讨论了降低波纹损失的途径.
The key issue of burning plasma in tokamak is the loss and confinement of the energetic particles,and one of the loss channels is the perturbation due to discrete toroidal field coils.The work investigated theαripple loss of CFETR hybrid scenario with plasma transportation code TRANSP/NUBEAM and guiding center code ORBIT,which have considered the initialαdistribution,classical steady state slowing down distribution and other models.The results of the work can give the information of the lost particles,including the lost position,fraction and localized heat load on the wall.The study reveals the heat load on CFETR is about 0.13 MW/m2,which is below the safety threshold of ITER,0.5 MW/m2,and the paper also gives the direction to reduce theαripple loss.
作者
郝保龙
陈伟
蔡辉山
李国强
王丰
吴斌
王进芳
陈佳乐
王兆亮
高翔
CHAN Vincent
CFETR TEAM
HAO BaoLong;CHEN Wei;CAI HuiShan;LI GuoQiang;WANG Feng;WU Bin;WANG JinFang;CHEN JiaLe;WANG ZhaoLiang;GAO Xiang;CHAN Vincent;CFETR TEAM(Advanced Energy Research Center,Shenzhen University,Shenzhen 518060,China;Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province,College of Optoelectronic Engineering,Shenzhen University,Shenzhen 518060,China;Southwestern Institute of Physics,Chengdu 610041,China;School of Physical Sciences,University of Science and Technology of China,Hefei 230026,China;Institute of Plasma Physics,Chinese Academy of Sciences,Hefei 230031,China;School of Physics,Dalian University of Technology,Dalian 116024,China)
出处
《中国科学:物理学、力学、天文学》
CSCD
北大核心
2020年第6期83-100,共18页
Scientia Sinica Physica,Mechanica & Astronomica
基金
国家自然科学基金(编号:11875290,11905142)
国家重点研发计划(编号:2017YFE0300500,2017YFE0300501)资助项目
关键词
聚变堆
托卡马克
Α粒子
纵场波纹
fusion reactor
tokamak
αparticle
toroidal field ripple