期刊文献+

基于天牛群算法的微电网经济调度 被引量:3

Economical Dispatching of Microgrid System Based on Beetle Swarm Antennae Search Algorithm
下载PDF
导出
摘要 为了提高清洁能源的利用率,降低微电网的发电成本,首先以微电网的发电成本最小与污染排放最少为目标,考虑到微电网实际运行的约束条件,建立了包含风机、光伏电池、燃气轮机、燃料电池及蓄电池的微电网日优化运行模型;然后针对天牛须的步长更新无规则问题,将群智能算法的思想和步长反馈思想引入标准天牛群算法中;最后将标准的天牛算法与改进的天牛算法分别用于微电网日优化运行模型的求解,验证改进算法能使微电网降低发电成本,减少环境污染。 In order to improve the utilization rate of clean energy and reduce the generation cost ofthe microgrid,firstly,with the goal of minimum generation cost and pollution emission of the microgrid,considering the constraints of the actual operation of the microgrid,a daily optimal operation model of the microgrid including wind turbines,photovoltaic cells,gas turbines,fuel cells and batteries is established.Then,for the problem of step-size update without rules,the ideas of swarm intelligence algorithm and the idea of step-size feedback are introduced into the standard Beetle swarm antennae search algorithm.Finally,the standard algorithm and the improved algorithm are respectively used to solve the daily optimal operation model of the microgrid,which proves that the improved algorithm can reduce the generation cost and environmental pollution of the microgrid.
作者 周磊 葛鹏 葛家宁 瞿吉 张森 袁全 ZHOU Lei;GE Peng;GE Jianing;QU Ji;ZHANG Sen;YUAN Quan(School of Electric Power Engineering,Nanjing Institute of Technology,Nanjing 211167,China;Nantong Power Supply Company,State Grid Jiangsu Electric Power Co.,Ltd.,Nantong 226000,China)
出处 《电工技术》 2020年第9期5-7,共3页 Electric Engineering
基金 江苏省研究生实践创新计划项目(编号SJCX 19-0524) 南京工程学院科技创新项目(编号TB20191644) 南京工程学院科技创新项目(编号TB20201601)。
关键词 微电网 运行优化 天牛群算法 步长反馈更新 microgrid optimal operation Beetle swarm antennae search algorithm step-size feedback and update
  • 相关文献

参考文献7

二级参考文献56

  • 1丁明,吴义纯,张立军.风电场风速概率分布参数计算方法的研究[J].中国电机工程学报,2005,25(10):107-110. 被引量:218
  • 2王成山,郑海峰,谢莹华,陈恺.计及分布式发电的配电系统随机潮流计算[J].电力系统自动化,2005,29(24):39-44. 被引量:288
  • 3房浩,李善峰,叶晓滨.天津市风暴潮经济损失评估[J].海洋环境科学,2007,26(3):271-274. 被引量:13
  • 4赵松原,黄明恪.模拟退火算法和POD降阶模态计算在翼型反设计中的应用[J].空气动力学学报,2007,25(2):236-240. 被引量:10
  • 5Atashpaz-Gargari E, Lucas C. Competitive Algorithm An Algorithm for Optimization Inspired by Imperialistic Com- petition [ C]. IEEE Congress on Evolutionary Computa- tion, Sirgapore, 25 - 28 September, 2007: 4661 - 4667. 被引量:1
  • 6Kayvanfar V, Zandieh M. The economic lot scheduling problem with deteriorating items and shortage: an impe- rialist competitive algorithm [ J ]. The International Journal of Advanced Manufacturing Technology, 2012, 62 (5-8): 420-425. 被引量:1
  • 7Esram T, Chapman P L. Comparison of Photovoltaic Ar- ray Maximum Power Power Point Tracking Techniques [ J]. IEEE Transactions on Energy Conversion, 2007, 22 (2): 439-449. 被引量:1
  • 8WenZ X, ShiL B, Xu Z, et al. Effects of wind power variability and intermittency on power flow [ C] //2012 IEEE Power and Engineering Society General Meeting, San Diego, LA, USA, 22-26 July, 2012: 1-7. 被引量:1
  • 9NREL. Energy modeling energy systems [ EB/OL] energy, com. software for hybrid renewable 2013. http//www, homer-. 被引量:1
  • 10Basu A K. Microgrids: Planning of fuel energy manage- ment by strategic deployment of CHP-based DERs-An ev- olutionary algorithm approach [J]. Electrical Plower and Energy Systems, 2013, 44 ( 1 ) : 326 - 336. 被引量:1

共引文献162

同被引文献31

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部