期刊文献+

基于配电物联网的反窃电预警系统研究及应用 被引量:8

Research and Application of Anti-stealing Early Warning System Based on Distribution Internet of Things
下载PDF
导出
摘要 基于电力物联网建设方向,结合大数据、人工智能深度机器学习技术,提出了基于配电物联网的反窃电预警系统研究及应用。通过配电台区"变-线-相-户"分段、分层的窃电台区嫌疑分析,客户用电负荷曲线的特征分析,精准锁定窃电嫌疑用户,提高供电单位窃电预警能力。首先,采用边缘物联代理技术采集用电特征数据,获取电表的电气数据及自动拓扑关系;其次,采用聚类、分层分析建立反窃电预警模型并结合专家诊断库生成窃电嫌疑用户清单;再其次,警电联动应用将窃电嫌疑用户推送至公安侦办系统,形成警电联动体系,最后展望系统扩展对相关业务的支撑,旨在探讨电网企业应用反窃电预警系统的价值。 Based on power iot construction direction,combined with large data depth,artificial intelligence,machine learning technology,put forward the power research and application of the early-warning system based on the distribution of the Internet of things。Through the distribution area"Transformer-line-phase-door"segmented,layered power suspected area analysis,customer characteristic analysis of electricity load curve,precision lock suspected power users,improve the capability of power supply unit power theft warning.Firstly,the edge coupling agent technology is used to collect electricity characteristic data and obtain the electrical data and automatic topological relationship of the electricity meter.Secondly,cluster analysis and stratification analysis are used to establish the early warning model of anti-electricity theft,and the list of suspected users of electricity theft is generated by combining the expert diagnosis database.Secondly,the combined application of alarm and electricity pushes suspected users to the public security investigation system to form a combined system of alarm and electricity.Finally,it looks forward to the support of the system expansion to related businesses,aiming to explore the value of the application of anti-alarm system for power grid enterprises.
作者 许小卉 许妙琦 唐冬来 叶鸿飞 朱晓庆 XU Xiao-hui;XU Miao-qi;TANG Dong-lai;YE Hong-fei;ZHU Xiao-qing(State Grid Zhejiang Electric Power Co.,Ltd.,Hangzhou,Zhejiang 310000,China;State Grid Zhejiang comprehensive energy service Co.,Ltd.,Hangzhou,Zhejiang 310000,China;Sichuan Zhongdian Qixing Information Technology Co.,Ltd.,Chengdu,Sichuan 610041,China;Haimen Power Supply Branch,State Grid Jiangsu Electric Power Co.,Ltd.,Haimen,Jiangsu 226100,China)
出处 《计算技术与自动化》 2020年第2期104-108,共5页 Computing Technology and Automation
关键词 配电物联网终端 反窃电预警 窃电行为辨识 distribution internet of things terminal early warning against electric larceny identification of stealing electricity
  • 相关文献

参考文献14

二级参考文献76

  • 1蒋怡.反窃电技术分析与新型防窃电计量箱的应用[J].内蒙古科技与经济,2007(3):94-95. 被引量:2
  • 2肖峻,张晶,朱涛,史常凯,张海平.基于关联分析的城市用电负荷研究[J].电力系统自动化,2007,31(17):103-107. 被引量:24
  • 3McDaniel P, McLaughlin S. Security and Privacy Challenges in the Smart Grid[J]. IEEE Secure Systems, 2009, 7(3): 75-77. 被引量:1
  • 4Cleveland F M. Cyber Ssecurity Issues for Advanced Metering Infrasttructure (ami) [C].//Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, 2008 IEEE. IEEE, 2008: 1-5. 被引量:1
  • 5Smith T B. Electricity theft: A Comparative Analysis [J]. Energy Policy, 2004, 32(18): 2067-2076. 被引量:1
  • 6McLaughlin S, Podkuiko D, McDaniel P. Energy theft in the Advanced Metering Infrastructure[M].//Critical Information Infrastructures Security, Springer Berlin Heidelberg, 2010: 176-157. 被引量:1
  • 7Wang L, Devabhaktuni V. Support Vector Machine based Data Classification for Detection of Electricity Theft [C].//Power Systems Conference and Exposition (PSCE), 2011 IEEE/PES. IEEE, 2011: 1-8. 被引量:1
  • 8Nizar A H, Dnng Z Y, Zhao J H, et al. A data Mining based NTL Analysis Method [C].//Power Engineering Society General Meeting, 2007. IEEE. 2007: 1-8. 被引量:1
  • 9Nagi J, Yap K S, Tiong S K, et al. Detection of Abnormalities and Electricity Theft using Genetic Support Vector Machines[C].//TENCON 2008-2008 IEEE Region 10 Conference. IEEE, 2008: 1-6. 被引量:1
  • 10Sch o lkopf B, Platt J C, Shawe-Taylor J, et al. Estimating the Support of a High-Dimensional Distribution [J]. Neural Computation, 2001, 13(7): 1443-1471. 被引量:1

共引文献311

同被引文献65

引证文献8

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部