摘要
提出了一种利用Chebyshev多项式代理模型来分析螺栓连接带法兰-圆柱壳结构频响函数不确定性的区间分析法。首先,利用8节点退化壳单元,通过有限元方法建立了带法兰-圆柱壳结构的动力学模型,从而求解系统的频响函数,并与实验测试的频响函数进行对比,验证了所建模型的有效性。然后,基于区间分析法建立了含区间参数的频响函数Chebyshev多项式代理模型。最后,考虑法兰处螺栓连接刚度不确定性,得到了单方向和多方向的连接刚度存在不确定性时的频响函数区间范围,并通过Monte-Carlo抽样法进行了验证。研究结果表明:Chebyshev多项式代理模型具有较高的求解精度和计算效率,轴向连接刚度不确定性对系统的频响函数影响最大;螺栓连接刚度不确定性主要导致频响函数在系统第1阶和第3阶固有频率处形成较宽的共振带。
In this paper,an interval analysis method using Chebyshev polynomial surrogate model is proposed to analyze the uncertainty of the frequency response function(FRF)of bolted joined cylindrical shell with flange.Firstly,the dynamic model of cylindrical shell with flange is established by 8-node degenerated shell element,and FRF of the system is solved.The model is verified by comparing with FRF of the experimental test.Then,Chebyshev polynomial surrogate model of FRF with interval parameters is established based on interval analysis method.Finally,considering the uncertainty of bolted connection stiffness of flange-cylindrical shell,the interval range of FRF of single direction and multi-direction is solved,and the Monte-Carlo simulation(MCS)issued to verify the accuracy and efficiency of the solution.The results show that the Chebyshev polynomial surrogate model has higher solution accuracy and calculation efficiency,the uncertainty of axis connection stiffness has the biggest influence on FRF of the system.The bolted connection stiffness mainly results larger resonance bands at the first and the third natural frequencies of the system.
作者
李坤
曾劲
于明月
马辉
柴清东
LI Kun;ZENGJtn;YU Mtng-yue;MA Hui;CHAI Qtng-dong(I.School of Mechanical Engineering&Automation,Northeastern University,Shenyang 110819,China;Key Laboratory of Vibration and Control of Aero-Propulsion Systems Ministry of Education of China,Northeastern University,Shenyang 110819,China)
出处
《振动工程学报》
EI
CSCD
北大核心
2020年第3期517-524,共8页
Journal of Vibration Engineering
基金
国家自然科学基金资助项目(11772089)
中央高校基本科研业务费专项资金资助项目(N170308028)
装备预研领域基金资助项目(61402100102)
辽宁省高等学校创新人才支持计划(LR2017035)。
关键词
圆柱壳
连接刚度
不确定性
区间分析法
频响函数
cylindrical shell
connection stiffness
uncertainty
interval analysis method
frequency response function