期刊文献+

大数据背景的变频兴趣变化推荐算法研究

Research on Recommendation Algorithm of Frequency Conversion Interest Change in the Context of Big Data
下载PDF
导出
摘要 现有的适应兴趣变化的协同过滤算法不能反应用户兴趣变化的频率,对即时热点也不足够敏感。同时,因为计算量大,不适应大数据场景。为此我们采用对时间分层的推荐模型结合热点权重函数,解决了传统算法存在问题,在生产环境中具备较高的应用价值。 The existing collaborative filtering algorithms that adapt to the change of interest can not reflect the frequency of the change of user interest,and are not sensitive to real-time hot spots.At the same time,because of the large amount of calculation,it does not adapt to the big data scene.For this reason,we use the time hierarchical recommendation model combined with the hot spot weight function to solve the problems of the traditional algorithm and have high application value in the production environment.
作者 冀晓亮 翁玉玲 JI Xiaoliang;WENG Yuling
出处 《科技创新与应用》 2020年第20期14-16,共3页 Technology Innovation and Application
关键词 个性化推荐 协同过滤 推荐算法 兴趣变化 大数据推荐系统 相似度计算 personalized recommendation collaborative filtering recommendation algorithm interest change big data recommendation system similarity calculation
  • 相关文献

参考文献6

二级参考文献45

  • 1罗文俊,李祥.多方安全矩阵乘积协议及应用[J].计算机学报,2005,28(7):1230-1235. 被引量:34
  • 2[1]Konstan J,Miller B,Maltz D,Herlocker J,Gordon L,Riedl J.GroupLens:Applying collaborative filtering to Usenet news[J].Communications of the ACM,40(3):77-C87,1997. 被引量:1
  • 3[2]Resnick and Varian.Recommender systems[J].Communications of the ACM,40(3):56-C58,1997. 被引量:1
  • 4[3]Schafer J B,Konstan J,Riedl J.Recommender systems in E-commerce'[A].In:EC '99:Proceedings of the First ACM Conference on Electronic Commerce[C],Denver,CO,1999.158-166. 被引量:1
  • 5[4]Tran T,Cohen R.Hybrid Recommender Systems for Electronic Commerce'[R].In Knowledge-Based Electronic Markets,Papers from the AAAI Workshop.AAAI Technical Report WS-00-04.pp.78-83.Menlo Park,CA:AAAI Press,2000. 被引量:1
  • 6Sarwar B. , Karypis G. , Konstan J. , Riedl J.. Analysis of recommendation algorithms for E-Commerce. In: Proceedings of the 2nd ACM Conference on Electronic Commerce, Minneapolis, MN, USA, 2000, 158-167 被引量:1
  • 7Chee S. H. S. , Han J. W., Wang K.. RecTree: An efficient collaborative filtering method. In: Proceedings of the 3rd International Conference on Data Warehousing and Knowledge Discovery, Munich, Germany, 2001, 141-151 被引量:1
  • 8Kantarcioglu M. , Clifton C.. Privacy-preserving distributed mining of association rules on horizontally partitioned data.IEEE Transactions on Knowledge and Data Engineering, 2004,16(9): 1026-1037 被引量:1
  • 9Vaidya J. , Clifton C.. Secure set intersection cardinality with application to association rule mining. Journal of Computer Security, 2005, 13(4): 593-622 被引量:1
  • 10Agrawal R. , Srikant R.. Privacy-preserving data mining. In:Proceedings of the 2000 ACM SIGMOD Conference on Management of Data, Dallas, Texas, USA, 2000, 439-450 被引量:1

共引文献364

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部