期刊文献+

一类捕食–食饵模型正解的存在唯一性与稳定性

Existence,Uniqueness and Stability of Positive Solutions for a Kind of Predator-prey Model
下载PDF
导出
摘要 本文主要研究一类具有非单调生长率的捕食食饵模型的平衡态正解问题.首先通过计算锥上紧算子的不动点指标,得到了正解存在的充分条件;其次,运用线性算子扰动理论以及拓扑度理论,讨论了参数对于正解唯一性与线性稳定性的影响;最后,通过数值模拟分别验证了在一维空间和二维空间下正解的存在性结论,也就是捕食者和食饵在一定条件下可以共存. In this paper,the positive solution of the steady-state system for the predator-prey model with a non-monotonous growth rate is studied.Firstly,through calculating the fixed point index of compact maps in cone,the sufficient conditions for the existence of any possible positive solutions are obtained.Secondly,by the perturbation theory and the topological degree theory,the influence of the parameter on the uniqueness and linear stability of positive solutions is discussed.Finally,some numerical simulations are carried out to complement the existence theorem of positive solutions in one dimension and two dimensions,respectively.That is,the predator and prey can co-exist under certain conditions.
作者 杨梦娜 李艳玲 YANG Meng-na;LI Yan-ling(School of Mathematics and Information Science,Shaanxi Normal University,Xi'an 710119)
出处 《工程数学学报》 CSCD 北大核心 2020年第3期281-294,共14页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(61672021).
关键词 捕食–食饵模型 不动点指数 唯一性 稳定性 数值模拟 predator-prey model fixed point index uniqueness stability numerical simulation
  • 相关文献

参考文献5

二级参考文献32

  • 1Brown K J. Nontrivial solutions of predator-prey systems with small diffusion[J].{H}Nonlinear Analysis TMA,1987.685-689. 被引量:1
  • 2Conway E D,Gardner R,Smoller J. Stability and bifurcation of steady-state solutions for predator-prey equations[J].{H}ADVANCES IN APPLIED MATHEMATICS,1982,(3):288-334. 被引量:1
  • 3Du Yihong,Lou Yuan. Some uniqueness and exact multiplicity results for a predator-prey model[J].Transctions of the American Mathematical Society,1997,(6):2443-2475. 被引量:1
  • 4王明新.非线性椭圆型方程[M]{H}北京:科学出版社,2010155-169. 被引量:1
  • 5叶其孝;李正元.反应扩散方程引论[M]{H}北京:科学出版社,1990106-137. 被引量:1
  • 6BLAT J, BROWN K J, Global bifurcation of positive solutions in some systems of elliptic equations[ J ]. SIAM J Math Anal, 1986, 17(6) :1339-1353. 被引量:1
  • 7DE IA SEN M. The generalized Beverton-Holt equation and the control of populations [ J ]. Appl Math Model, 2008, 32 ( 11 ) : 2312-2328. 被引量:1
  • 8DE IA SEN M, ALONSO-QUESADA S. Control issues for the Beverton-Holt equation in ecology by locally monitonng the environment carrying capacity : Non-adaptive and adaptive cases [ J ]. Appl Math Comput, 2009, 215 ( 7 ) : 2616-2633. 被引量:1
  • 9ERBACH A, LUTSCHER F, SEO G. Bistability and limit cycles in generalist predator-prey dynamics[ J]. Ecol Comple, 2013, 14:48-55. 被引量:1
  • 10HSU S B, HWANG T W, KUANG Y. Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system [J]. J Math Biol, 2001,42(6):489-506. 被引量:1

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部