期刊文献+

基于BP神经网络的齿圈装夹变形预测研究 被引量:8

Prediction of gear ring clamping deformation based on BP neural network
下载PDF
导出
摘要 针对薄壁齿圈的装夹变形问题,将Abaqus有限元仿真与BP神经网络技术应用到了齿圈装夹变形预测中。根据齿圈实际加工装夹情况,应用Abaqus有限元分析软件,建立了齿圈装夹变形的仿真模型,开展了齿圈装夹变形的有限元分析研究,建立了齿圈装夹力及其径向最大装夹变形之间的关系;以Abaqus有限元仿真数据作为训练样本和检验样本,借助BP神经网络良好的预测精度和非线性泛化能力,通过MATLAB神经网络工具箱,建立了基于BP神经网络的齿圈装夹变形预测数字化模型;并根据检验样本对模型进行了检验,预测值与仿真值之间的相对误差在0.05%之内。研究结果表明:建立的基于BP神经网络的齿圈装夹变形预测数字化模型是准确有效的,可以为智能化大数据加工制造环境下的齿圈装夹参数优化提供准确有效的数据。 Aiming at the problem of clamping deformation of thin-walled ring gear,Abaqus finite element simulation and BP neural network technology were applied to the prediction of gear ring deformation.According to the actual machining and clamping of the gear ring,the Abaqus finite element analysis software was used to establish the relathonsilp between the simulation model of the gear ring clamping deformation,and the finite element analysis of the ring gear clamping deformation was carried out to establish the relationship between the ring gear clamping force and its radial maximum clamping deformations.Based on Abaqus finite element simulation data as training samples and test samples,with the good prediction accuracy and nonlinear generalization ability of BP neural network,BP neural network based digital model of gear ring deformation prediction was established by MATLAB neural network toolbox,and the model was tested according to the test sample,and the relative error between the predicted value and the simulated value was within 0.05%.The results indicate that the established BP neural network based digital model of gear ring deformation prediction is accurate and effective,and can provide accurate and effective data for the optimization of gear ring clamping parameters in intelligent big data processing and manufacturing environment.
作者 韩军 张磊 段荣鑫 王静 HAN Jun;ZHANG Lei;DUAN Rong-xing;WANG Jing(School of Mechanical Engineering,Inner Mongolia University of Science and Technology,Baotou 014010,China)
出处 《机电工程》 CAS 北大核心 2020年第6期641-646,共6页 Journal of Mechanical & Electrical Engineering
基金 内蒙古自治区高等学校科学研究项目(NJZZ19125)。
关键词 齿圈 有限元仿真 BP神经网络 装夹变形预测 gear ring finite element simulation BP neural network clamping deformation prediction
  • 相关文献

参考文献8

  • 1周小兵..精密薄壁零件装夹变形的分析与控制研究[D].南京航空航天大学,2006:
  • 2李目..基于变形控制的薄壁件铣削加工参数优化及仿真研究[D].南京航空航天大学,2010:
  • 3陈华..薄壁件加工过程优化仿真技术研究[D].南京航空航天大学,2008:
  • 4张婷..航空薄壁件装夹布局优化研究[D].南昌航空大学,2017:
  • 5赵旭亮..薄壁件装夹变形预测及装夹布局优化方法[D].南昌航空大学,2014:
  • 6秦国华,赵旭亮,吴竹溪.基于神经网络与遗传算法的薄壁件多重装夹布局优化[J].机械工程学报,2015,51(1):203-212. 被引量:37
  • 7曹岩,沈冰,程文..ABAQU 6.14中文版有限元分析与实例详解[M].北京:清华大学出版社,2018.
  • 8陈远玲,龙卫仁,张宝磊.应用人工神经网络预测高速铣削淬硬钢的切削力[J].机械设计与制造,2009(10):241-243. 被引量:10

二级参考文献16

  • 1秦国华,吴竹溪,张卫红.薄壁件的装夹变形机理分析与控制技术[J].机械工程学报,2007,43(4):211-216. 被引量:63
  • 2唐东红,孙厚芳,王洪艳.用BP神经网络预测数控铣削变形[J].制造技术与机床,2007(8):48-50. 被引量:7
  • 3李目.基于变形控制的薄壁件铣削加工参数优化及仿真研究[D].南京:南京航空航天大学,2008. 被引量:2
  • 4KASHYAP S,EVRIES W R. Finite element analysis andoptimization in fixture design [J]. StructuralOptimization, 1999, 18(2-3): 193-201. 被引量:1
  • 5SIEBENALER S P,MELKOTE S N. Prediction ofworkpiece deformation in a fixture system using the finiteelement method [J]. International Journal of MachineTools & Manufacture, 2006,46(1): 51-58. 被引量:1
  • 6CAI W, HU S J, YUAN J X. Deformable sheet metalfixturing: principles, algorithms, and simulations [J].ASME Journal of Manufacturing Science andEngineering, 1996, 118(3): 318-324. 被引量:1
  • 7KAYA N. Machining fixture locating and clampingposition optimization using genetic algorithms [J].Computers in Industry, 2006, 57(2): 112-120. 被引量:1
  • 8CHEN W F, NI L J, XUE J B. Deformation controlthrough fixture layout design and clamping forceoptimization [J]. International Journal of AdvancedManufacturing Technology, 2008,38(9-10): 860-867. 被引量:1
  • 9LIU S G, ZHENG L, ZHANG Z H, et al. Optimizationof the number and positions of fixture locators in theperipheral milling of a low-rigidity workpiece [J].International Journal of Advanced ManufacturingTechnology, 2007, 33(7-8): 668-676. 被引量:1
  • 10ANDONIE R. The psychological limits of neuralcomputation, in: Dealing with complexity: A neuralnetwork approach [M]. London: Springer-Verlag,1997. 被引量:1

共引文献45

同被引文献77

引证文献8

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部