期刊文献+

面向属性网络的可重叠多向谱社区检测算法 被引量:6

An overlapping multiway spectral community detection method for attributed network
下载PDF
导出
摘要 谱社区检测算法多基于结构对网络进行划分,往往受限于划分数量且难以控制重叠程度。设计了面向属性网络的谱社区检测算法,可将属性网络划分为任意数量的可重叠社区并有效发现离群点。具体地,首先,从结构和属性两方面综合考虑,基于加权模块度设计了最大化到节点向量化的分区映射方法;其次,给出簇中心向量的初始选择策略,并将其融合在面向属性网络的重叠度和离群度制约中,实现重叠社区的发现;再次,设计节点分配策略,计算节点与簇中心向量的内积,将节点分配给具有最高内积的社区;最后,结合节点隶属情况,高效地在属性网络中检测出结构紧密、可重叠和具有离群点的社区。此外,将本文算法应用于现实世界的多个网络,验证了本文算法的有效性和效率。 Spectral community detection algorithms generally divide the network via structure,which is often limited by the number of divisions and it is difficult to control the degree of overlapping.This paper designs an overlapping multiway spectral community detection algorithm for attribute network,which can divide the attribute network into any number of overlapping communities and effectively discover outliers.Firstly,the partition mapping method from maximization to node vectorization is designed based on the weighted modularity.Secondly,the initial selection strategy of cluster center vectors is given and merged in the attributed network.Thirdly,the node allocation strategy is designed to calculate the inner product of the node and clustering center vector and to assign the node to the community with the highest inner product.Finally,the tightly structured overlapping communities that have out-liers are effectively detected.In addition,applying the algorithm to multiple networks in the real world verifies the effectiveness and efficiency of the proposed algorithm.
作者 李青青 马慧芳 吴玉泽 刘海姣 LI Qing-qing;MA Hui-fang;WU Yu-ze;LIU Hai-jiao(College of Computer Science and Engineering,Northwest Normal University,Lanzhou 730070;Guangxi Key Laboratory of Trusted Software,Guilin University of Electronic Technology,Guilin 541004;School of Management,Gansu Agricultural University,Lanzhou 730070,China)
出处 《计算机工程与科学》 CSCD 北大核心 2020年第6期984-992,共9页 Computer Engineering & Science
基金 国家自然科学基金(61762078,61363058,61966004) 广西多源信息挖掘与安全重点实验室开放基金(MIMS18-08) 西北师范大学2019年度青年教师科研能力提升计划重大项目(NWNU-LKQN2019-2)。
关键词 属性网络 多向谱算法 可重叠社区 离群点 attributed network multiway spectral algorithm overlapping community outlier
  • 相关文献

参考文献5

二级参考文献72

  • 1Sun JG, Liu J, Zhao LY. Clustering algorithms research. Ruan Jian Xue Bao/Joumal of Software, 2008,19(1): 48-61 (in Chinese with English abstract), http://www.jos.org.cn/1000-9825/19/48.htm [doi: 10.3724/SP.J.1001.2008.00048]. 被引量:1
  • 2Schleif FM, Zhu XB, Gisbrecht A, Hammer B. Fast approximated relational and kernel clustering. In: Proc. of the 21st Int’l Conf. on Pattern Recognition. 2012. 1229-1232. 被引量:1
  • 3Jia HJ, Ding SF, Xu XZ, Nie R. The latest research progress on spectral clustering. Neural Computing and Applications, 2014, 24(7-8): 1477-1486. [doi: 10.1007/s00521 -013-1439-2]. 被引量:1
  • 4Chan PK, Schlag MDF, Zien JY. Spectral fc-way ratio-cut partitioning and clustering. IEEE Trans, on Computer-Aided Design of Integrated Circuits and Systems, 1994,13(9):1088-1096. [doi: 10.1109/43.310898]. 被引量:1
  • 5Shi J, Malik J. Normalized cuts and image segmentation. IEEE Trans, on Pattern Analysis and Machine Intelligence, 2000,22(8): 888-905. [doi: 10.1109/34.868688]. 被引量:1
  • 6Rebagliati N, Verri A. Spectral clustering with more than k eigenvectors. Neurocomputing, 2011,74(9):1391-1401. [doi: 10.1016/j. neucom.2010.12.008]. 被引量:1
  • 7Von Luxburg U. A tutorial on spectral clustering. Statistics and Computing, 2007,17(4):395-416. [doi: 10.1007/sl 1222-007-9033 -z]. 被引量:1
  • 8Fowlkes C, Belongie S, Chung F, Malik J. Spectral grouping using the NystrOm method. IEEE Trans, on Pattern Analysis and Machine Intelligence, 2004,26(2):214-225. [doi: 10.1109/TPAMI.2004.1262185]. 被引量:1
  • 9Kumar S, Mohri M, Talwalkar A. Sampling methods for the Nystrom method. Journal of Machine Learning Research, 2012,13(1): 981-1006. 被引量:1
  • 10Si S, Hsieh CJ, Dhillon I. Memory efficient kernel approximation. In: Proc. of the 31st Int’l Conf. on Machine Learning. 2014. 701-709. 被引量:1

共引文献77

同被引文献40

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部