期刊文献+

基于物联网大数据的城市降雨径流控制率分析 被引量:4

Analysis of Urban Rainfall Runoff Control Rate Based on Internet of Things Big Data
下载PDF
导出
摘要 针对海绵城市降雨径流控制率监测的两大技术难点--监测设备布置难题和数据统计难题,采用基于物联网和大数据的监测技术及自动分析算法,以我国某海绵城市试点区为例,对全区域81个雨水排口进行子汇水区域划分,制定了监测方案,并获得了降雨场次下的全过程降雨的监测数据,基于超过40万条监测数据,计算了不同降雨量下研究区域的径流控制率,并提出了基于污水管网监测的降雨径流控制率修正方法。结果表明,在降雨日中,确实存在雨水进入污水管网的情况,因此在监测方案中应同时考虑对污水管网进行有效监测;在34.4、13.2、9.4、19.4 mm降雨条件下,研究区域径流总径流率依次为65.14%、81.48%、87.39%、78.81%,与研究区域设计降雨量27.4mm及75%的径流控制目标相比,海绵城市的建设可满足年径流总量控制的目的。 Aiming at the two major technical difficulties in monitoring the control rate of rainfall and runoff in sponge cities-the difficulty of monitoring equipment layout and the problem of data statistics,the monitoring technology based on the Internet of Things and big data and automatic analysis algorithms are adopted.Taking a certain sponge city pilot area as an example,sub-catchment areas were divided into 81 rainwater outlets in the whole region,and a monitoring plan was developed to obtain the monitoring data of rainfall in the whole process under rainfall events.Based on more than 400,000 pieces of monitoring data,the control rate of runoff was calculated under different rainfall,and the correction of control rate of rainfall-runoff was proposed based on monitoring of sewage pipe networks.The results show that the rainwater flows into sewage pipe networks in the rainfall days.Therefore,the planning should consider monitoring sewage pipe networks.Under the rainfall conditions of 34.4 mm,13.2 mm,9.4 mm,and 19.4 mm,the total runoff rates in the study area was 65.14%,81.48%,87.39%,78.81%,compared with the design rainfall of 27.4 mm and 75% of the runoff control target in the study area,the construction of the sponge city can meet the purpose of the total annual runoff control.
作者 杨婷婷 李志一 赵冬泉 YANG Ting-ting;LI Zhi-yi;ZHAO Dong-quan(Beijing Tsinghuan Smart Water Technology Co.,Ltd.,Beijing 100086,China)
出处 《水电能源科学》 北大核心 2020年第5期15-17,210,共4页 Water Resources and Power
关键词 降雨径流控制率 流量修正 大数据 海绵城市 control rate of rainfall-runoff flow correction big data sponge city
  • 相关文献

参考文献9

二级参考文献57

共引文献108

同被引文献35

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部