期刊文献+

嵌入双曲层的神经排序式图表示学习方法

Graph Representation Learning Method Based on Neural Ranking with Embedded Hyperbolic Layer
下载PDF
导出
摘要 为解决已有图表示学习方法复杂性较高的问题,提出一种能在维持图特征表达力的同时提升学习效率的方法。通过在神经网络表示模型中设置适当的双曲几何结构捕获图数据的基本属性,利用贝叶斯个性化排序目标最大化节点之间正确链接和错误链接的差距从而自动学习相似性信息,在所设计的神经排序模型中使用双曲距离函数计算节点之间的层次距离。在此基础上,基于黎曼梯度下降法学习节点的特征向量。实验结果表明,相对DNGR、HARP等方法,该方法能够高效地学习节点特征,而且能获得更加紧凑、更具表达力的特征向量表示。 To address the high complexity of existing graph representation learning methods,this paper proposes a new graph representation learning method to improve the learning efficiency while maintaining the representation performance of graph features.The method captures the basic properties of graph data by establishing appropriate hyperbolic geometry structure in the neural network representation model.Then the Bayesian Personalized Ranking(BPR)target is used to maximize the gap between the correct links and the wrong links to automatically learn the similarity information.Moreover,the hyperbolic distance function is used to calculate the hierarchical distance between the nodes in the designed neural ranking model.Finally,the model uses the Riemannian gradient descent method to learn the feature vector of nodes.Experimental results show that the proposed method can efficiently learn node features,and can provide more compact and more expressive feature vector representations than DNGR,HARP and other methods.
作者 唐素勤 刘笑梅 袁磊 TANG Suqin;LIU Xiaomei;YUAN Lei(Faculty of Education,Guangxi Normal University,Guilin,Guangxi 541004,China;Guangxi Key Lab of Multi-Source Information Mining and Security,Guangxi Normal University,Guilin,Guangxi 541004,China)
出处 《计算机工程》 CAS CSCD 北大核心 2020年第6期81-87,共7页 Computer Engineering
基金 国家自然科学基金(61967002,61663004,61662007,61866004) 国家哲学社会科学基金教育学一般项目(BCA170081) 广西自然科学基金(2016GXNSFAA380146,2017GXNSFAA198365)。
关键词 图表示学习 双曲几何 双曲面模型 神经网络 贝叶斯个性化排序 graph representation learning hyperbolic geometry hyperboloid model neural network Bayesian Personalized Ranking(BPR)
  • 相关文献

参考文献3

二级参考文献46

  • 1Independent component analysis: algorithms and applications[J]. Neural Networks . 2000 (4) 被引量:4
  • 2Bastian M,,Heymann S,Jacomy M.Gephi:An Open Source Software for Exploring and Manipulating Networks. International AAAI Conference on Weblogs and Social Media . 2009 被引量:1
  • 3Perozzi B,Al-Rfou R,Skiena S.Deepwalk:online learning of social representations. Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . 2014 被引量:1
  • 4Lee H,Battle A,Raina R,et al.Efficient sparse coding algorithms. Neural Information Processing Systems . 2006 被引量:1
  • 5J. Mairal,F. Bach,J. Ponce,G. Sapiro,A. Zisserman.Supervised dictionarylearning. IEEE Conference on Neural Information Processing Systems . 2009 被引量:1
  • 6Bengio Y,Goodfellow I,Courville A.Deep Learning. . 2015 被引量:1
  • 7Kobourov S.Spring embedders and force directed graph drawing algorithms. . 2012 被引量:1
  • 8Hu Z T,Yao J J,Cui B,et al.Community level diffusion extraction. Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data . 2015 被引量:1
  • 9Jacob Y,Denoyer L,Gallinari P.Learning latent representations of nodes for classifying in heterogeneous social networks. Proceedings of the 7th ACM International Conference on Web Search and Data Mining . 2014 被引量:1
  • 10Le T,Lauw H W.Probabilistic latent document network embedding. Proceedings of 2014 IEEE International Conference on Data Mining (ICDM) . 2014 被引量:1

共引文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部