期刊文献+

基于自适应阈值活动语音检测和最小均方误差对数谱幅度估计的低信噪比降噪算法 被引量:5

Low SNR denoising algorithm based on adaptive voice activity detection and minimum mean-square error log-spectral amplitude estimation
下载PDF
导出
摘要 针对低信噪比(SNR)环境下传统方法对声信号降噪的局限性,提出了一种联合自适应阈值活动语音检测(VAD)算法和最小均方误差对数谱幅度估计(MMSE-LSA)的实时降噪算法。首先,在VAD算法中通过基于能量概率最大值的概率统计来对背景噪声进行估计,对得到的背景噪声进行实时更新并保存;然后,将实时更新的背景噪声作为MMSE-LSA的参考噪声,并对噪声幅度谱进行自适应更新,最后进行降噪处理。通过在真实场景中对四类声信号进行实验,结果表明,该算法在保证对低SNR声信号的实时处理的情况下,相较于传统MMSE-LSA算法,降噪信号的SNR能够提高10~15 dB,且不存在信号过减的情况,可应用于实际工程。 Aiming at the limitations of traditional noise reduction methods for acoustic signals in low Signal-to-Noise Ratio(SNR)environment,a real-time noise reduction algorithm was proposed by combining adaptive threshold Voice Activity Detection(VAD)algorithm and Minimum Mean-Square Error Log-Spectral Amplitude estimation(MMSE-LSA).Firstly,the background noise was estimated in VAD algorithm by probability statistics based on the maximum value of the energy probability,and the obtained background noise was updated in real time and saved.Then,the background noise updated in real time was used as the reference noise of MMSE-LSA,and the noise amplitude spectrum was updated adaptively.Finally,the noise reduction processing was performed.The experimental results on four kinds of acoustic signals in real scenes show that the proposed algorithm can guarantee the real-time processing of low SNR acoustic signals;and compared with the traditional MMSE-LSA algorithm,it has the SNR of the noise reduction signal increased by 10-15 dB without over-subtraction.It can be applied to practical engineering.
作者 张皓然 王学渊 李小霞 ZHANG Haoran;WANG Xueyuan;LI Xiaoxia(Sichuan Key Laboratory of Special Environmental Robotics(School of Information Engineering,Southwest University of Science and Technology),Mianyang Sichuan 621010,China)
出处 《计算机应用》 CSCD 北大核心 2020年第6期1763-1768,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(61771411)。
关键词 真实环境 自适应阈值 活动语音检测算法 实时最小均方误差对数谱幅度估计算法 实时背景 低信噪比 real environment adaptive threshold Voice Activity Detection(VAD)algorithm real-time Minimum Mean-Square Error Log-Spectral Amplitude estimation(MMSE-LSA)algorithm real-time background low Signal-to-Noise Ratio(SNR)
  • 相关文献

参考文献6

二级参考文献35

  • 1McAulay R J,Malpass M L. Speech enhancement using a soft decision noise suppression filter[J]. IEEE Trans. Acoust., Speech, Signal Processing, 1980,28(2): 137-145. 被引量:1
  • 2Y Ephraim,MalahD. Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator[J]. IEEE Trans. Aeoust., Speech, Signal Processing, 1984,32(6):1109-1121. 被引量:1
  • 3Ephraim Y,Cohen I. Recent advancements in speech enhancement in The Electrical Engineering Handbook[EB/OL]. Boca Raton,FL:CRC,2004. http://ece.gmu.edu/~yephraim/ephraim.html. 被引量:1
  • 4Chang J H,Kim N S,Mitra S K. Voice activity detection based on multiple statistical models[J]. IEEE Trans. Signal Process., 2006,54(6):1965-1976. 被引量:1
  • 5Chang J H,Kim N S. Speech enhancement:New approaches to soft decision[J]. IEICE Trans. Inf. Syst., 2001,E84-D(9): 1231-1240. 被引量:1
  • 6Sohn J,Kim N S,Sun W g. A statistical model- based voice activity detection[J]. IEEE Signal Process.Lett., 1999,6(1):1-3. 被引量:1
  • 7Martin R, Noise power spectral density estimation based on optimal smoothing and minimum statistics[J]. IEEE. Trans. Speech Audio Processing, 2001,9(5):504-512. 被引量:1
  • 8SREEKUMAR K T, GEORGE K K, ARUNRAJ K, et al. Spectral matching based voice activity detector for improved speaker recognition[C].2014 International Conference on Power Signals Control and Computations (EPSCICON), Thrissur, 2014: 1-4. doi: 10.1109/EPSCICON.2014.6887507. 被引量:1
  • 9DUTA C L, GHEORGHE L, and TAPUS N. Real time implementation of MELP speech compression algorithm using Blackfin processors[C].2015 9th International Symposium on Image and Signal Processing and Analysis (ISPA), Zagreb, 2015: 250-255. doi: 10.1109/ISPA.2015. 7306067. 被引量:1
  • 10CHUL Y I, HYEONTAEK L, and DONGSUK Y. Formant-based robust voice activity detection[J].IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2015, 23(12): 2238-2245. doi: 10.1109/TASLP. 2015.2476762. 被引量:1

共引文献22

同被引文献76

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部