期刊文献+

基于改进YOLOv3的目标跟踪算法研究 被引量:4

Research on Target Tracking Algorithms Based on Improved YOLOv3
下载PDF
导出
摘要 针对基于深度学习的目标跟踪算法实时性差、成功率低以及抗干扰性弱等问题,提出了一种基于改进YOLOv3和DSST的目标跟踪算法。选用检测精度和速度均优于SDD的YOLOv3检测算法,并通过减少YOLOv3算法中1个尺度的输出张量以提高检测实时性;将DSST跟踪算法预测的目标区域放大2倍后作为YOLOv3检测算法输入,检测结果用于更新DSST跟踪目标框,从而提高跟踪算法的抗干扰性。实验表明:提出的算法提高了跟踪算法成功率和实时性,在很多场景下表现出较强的鲁棒性。 Aiming at the problems of poor real-time performance, low success rate and weak anti-jamming of target tracking algorithm based on deep learning, a target tracking algorithm based on improved YOLOv3 and DSST is proposed. The YOLOv3 detection algorithm with better detection accuracy and speed than SDD was selected, and the real-time detection performance was improved by reducing the output tensor of one scale in YOLOv3 algorithm. The target area predicted with DSST tracking algorithm was enlarged twice and then used as the input of YOLOv3 detection algorithm. The detection result was used to update the target frame of DSST tracking, so as to improve the anti-interference performance of tracking algorithm. Experiments show that the proposed algorithm improves the tracking algorithm’s success rate and real-time performance, and strong robustness in many scenarios is available.
作者 蔡锦华 祝义荣 CAI Jin-hua;ZHU Yi-rong(Jiangxi Lianchuang Precision Electromechanical C o.,Ltd,Nanchang Jiangxi 330096,China)
出处 《计算机仿真》 北大核心 2020年第5期213-217,321,共6页 Computer Simulation
关键词 目标跟踪 算法 网络 Target Tracking Algorithm Network
  • 相关文献

参考文献6

二级参考文献22

  • 1omaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003;25 (5) :564-577. 被引量:1
  • 2Kailath T. The divergence and bhattacharyya distance measures in signal selection. IEEE Transactions on Communication Technology, 1967 ;COM - 15:52-60. 被引量:1
  • 3Leng Bin,He Qing,Xiao Hanzhang,et al.An improved pedestrians detection algorithm using HOG and ViBe[C]//IEEE International Conference on Robotics and Biomimetics,2013:240-244. 被引量:1
  • 4Soojin Kim,Kyeongsoon Cho.Trade-off between accuracy and speed for pedestrian detection using HOG feature[C]//IEEE3rd International Conference on Consumer Electronics-Berlin,2013:207-209. 被引量:1
  • 5Pirsiavash H,Ramanan D,Fowlkes CC.Globally-optimal greedy algorithms for tracking a variable number of objects[C]//IEEE Conference on Computer Vision and Pattern Recognition,2011:1201-1208. 被引量:1
  • 6Xing J,Ai H,Lao S.Multi-object tracking through occlusions by local tracklets filtering and global tracklets association with detection responses[C]//IEEE Conference on Computer Vision and Pattern Recognition,2009:1200-1207. 被引量:1
  • 7Kuo CH,Huang C,Nevatia R.Multi-target tracking by on-line learned discriminative appearance models[C]//IEEE Conference on Computer Vision and Pattern Recognition,2010:685-692. 被引量:1
  • 8Kumar A,Mishra SK,Dash PP.Robust detection&tracking of object by particle filter using color information[C]//4th IEEE Conference on Computing,Communications and Networking Technologies,2013:1-6. 被引量:1
  • 9Chu Hongxia,Xie Zhongyu,Nie Xiangju,et al.Particle filter target tracking method optimized by improved mean shift[C]//IEEE Conference on Information and Automation,2013:991-994. 被引量:1
  • 10Liu Yucheng,Liu Yubin.Incremental learning method of least squares support vector machine[C]//IEEE Conference on Intelligent Computation Technology and Automation,2010:529-532. 被引量:1

共引文献41

同被引文献31

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部