摘要
考虑到经济环境系统中的主要指标具有“时间记忆”的特征,为分析此系统,提出了带有环境净化的分数阶Solow模型.采用离散化处理方法求解该模型,并运用非线性动力学理论、数值模拟和参数分析的方法,分析了环境污染指数和污染治理强度两个参数对经济环境系统动态演化的影响机理、不同分数阶阶数对模型的动力学行为影响.结果表明:分数阶Solow模型对环境污染指数和污染治理强度两个参数具有高度敏感性,并在临界参数附近发生分岔,出现了极限环现象,即经济周期;同时增加污染治理投资对经济衰退具有一定的遏制作用;与整数阶相比,在刻画经济环境系统方面,分数阶Solow模型具有更强的优势.
Considering the main indexes in the economy-environment system have the characteristics of time memory,a fractional Solow model with environmental purification is put forward in order to analyze the system.Discretization method is presented to solve the model,then nonlinear dynamics theory,numerical simulation and parameter analysis method are implemented to analyze the dynamic evolution mechanism of economy environment system influenced by environmental pollution index and pollution abatement intensity,and to analyze the dynamic behavior influence of different fractional orders on the model.Results show that the fractional order Solow model has so high a sensitivity to environmental pollution index and pollution abatement intensity that bifurcation happens near the critical parameters,then the limit cycles phenomenon,namely economic cycle,appears.Further,increased pollution abatement investment can curb economic recession to some extent.Our fractional order model has more advantages than integer order models in describing the economic environment system.
作者
李佼瑞
张艳霞
Li Jiaorui;Zhang Yanxia(Statistical Institute,Xi’an University of Finance and Economics,Xi’an 710100,China)
出处
《系统工程学报》
CSCD
北大核心
2020年第1期1-12,共12页
Journal of Systems Engineering
基金
国家自然科学基金资助项目(11572231)
陕西省教育厅专项科研计划资助项目(16JK1301).