期刊文献+

超临界CO2剥离法制备石墨烯的过程强化研究 被引量:4

Research progress of strengthening methods in graphene preparation by supercritical CO2 exfoliation
下载PDF
导出
摘要 石墨烯因其独特的二维结构和优异的物理性能在众多领域中引起了广泛的关注,高质量石墨烯的制备是实现其应用价值的前提。尽管目前石墨烯的制备方法较多,但是开发绿色、低成本、规模化制备方法的道路仍然充满挑战。物理法剥离石墨能够实现高结晶石墨烯的制备,特别是超临界CO2流体具有廉价、绿色、稳定、易分离且可重复利用的优势,在石墨烯制备上展现出巨大的应用潜力。以超临界CO2制备石墨烯为出发点,梳理了近年来超临界CO2法剥离石墨制备石墨烯的研究进展,重点阐述了制备过程中的强化剥离手段,期望对未来石墨烯材料的制备提供思路。 Graphene has attracted extensive attention in many fields because of its unique two-dimensional structure and excellent physical properties.The preparation of high-quality graphene is the premise of realizing its application value.Although there are many preparation methods for graphene,the development of green,low-cost and large-scale preparation strategy is still full of challenges.Highly crystalline graphene nanosheets can be obtained through the exfoliation of graphite using physical methods.Due to the advantages of cheap,green,stable,easily separated and reusable,the supercritical CO2 fluid exhibits a great potential in the preparation of graphene.Focusing on the preparation methods,the research progress in recent years about the preparation of graphene by using supercritical CO2 method has been reviewed.Especially,the employed process intensification technique has been highlighted in this field.This review can provide insights for the high-efficiency conversion of graphite into high-yield graphene in future.
作者 杨旺 李云 田晓娟 杨帆 李永峰 YANG Wang;LI Yun;TIAN Xiaojuan;YANG Fan;LI Yongfeng(State Key Laboratory of Heavy Oil Processing,China University of Petroleum,Beijing 102249,China)
出处 《化工学报》 EI CAS CSCD 北大核心 2020年第6期2599-2611,共13页 CIESC Journal
基金 国家自然科学基金项目(21776308,21908245) 中国石油大学(北京)科研基金资助项目(2462018YJRC009,2462017YJRC051)。
关键词 石墨烯 制备 超临界流体 二氧化碳 过程强化 graphene preparation supercritical fluid carbon dioxide process intensification
  • 相关文献

参考文献5

二级参考文献71

  • 1李洪钟.聚焦结构、界面与多尺度问题,开辟化学工程的新里程[J].过程工程学报,2006,6(6):991-996. 被引量:13
  • 2Castro Nero A H, Guinea F, Peres N M R, et al. The electronic properties of graphene. Rev Mod Phys, 2009, 81:109-162. 被引量:1
  • 3Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6:183-191. 被引量:1
  • 4Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306:666-669. 被引量:1
  • 5Rao C N R, Sood A K, Subrahmanyam K S, et al. Graphene: The new two-dimensional nanomaterial. Angew Chem Int Ed, 2(/09, 48:7752-7777. 被引量:1
  • 6Tombros N, Jozsa C, Popinciuc M. et al. Electronic spin transport and spin precession in single graphene layers at room temperature. Na- ture, 2007, 448:571-574. 被引量:1
  • 7Zhang Y B, Tan Y W, Stormer H L, et al. Experimental observation of the quantum H;dl effect and Berry's phase in graphene. Nature, 2005. 438:201-204. 被引量:1
  • 8Stankovich S, Dikin D A, Piner R D. et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45:1558-1565. 被引量:1
  • 9Stankovich S, Piner R D, Chen X Q, et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem, 2006, 16:155-158. 被引量:1
  • 10Stankovich S. Piner R D. Nguyen S T. et al. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon, 2006, 44:3342-3347. 被引量:1

共引文献52

同被引文献28

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部