期刊文献+

Prediction of metal futures price volatility and empirical analysis based on symbolic time series of high-frequency 被引量:1

高频尺度下基于符号时间序列的金属期货价格波动预测及实证
下载PDF
导出
摘要 The metal futures price fluctuation prediction model was constructed based on symbolic high-frequency time series using high-frequency data on the Shanghai Copper Futures Exchange from July 2014 to September 2018,and the sample was divided into 194 histogram time series employing symbolic time series.The next cycle was then predicted using the K-NN algorithm and exponential smoothing,respectively.The results show that the trend of the histogram of the copper futures earnings prediction is gentler than that of the actual histogram,the overall situation of the prediction results is better,and the overall fluctuation of the one-week earnings of the copper futures predicted and the actual volatility are largely the same.This shows that the results predicted by the K-NN algorithm are more accurate than those predicted by the exponential smoothing method.Based on the predicted one-week price fluctuations of copper futures,regulators and investors in China’s copper futures market can timely adjust their regulatory policies and investment strategies to control risks. 构建高频尺度下的基于符号时间序列的金属期货价格波动预测模型,并选取上海铜期货交易所2014年7月到2018年9月的高频数据,采用符号时间序列方法将样本分为194个直方图时间序列,分别使用K-NN算法与指数平滑法预测下一个周期。结果显示,铜期货的收益预测得出的直方图走势比实际的直方图走势较为平缓,预测结果的整体情况较好,并且预测铜期货所得一周收益的整体波动与实际波动值在很大程度上一致。这表明用K-NN算法预测所得的结果比指数平滑法预测的结果更加精确。根据预测得到的铜期货一周的价格整体波动情况,中国铜期货市场的监管者及投资者可以及时调整其监管政策和投资策略以控制风险。
作者 Dan WU Jian-bai HUANG Mei-rui ZHONG 吴丹;黄健柏;钟美瑞(中南大学商学院,长沙410083;中南大学金属资源战略研究院,长沙410083)
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第6期1707-1716,共10页 中国有色金属学报(英文版)
基金 Projects(71633006,7184207,7184210)supported by the National Natural Science Foundation of China Project(2019CX016)supported by the Annual Innovation-driven Project in Central South University,China。
关键词 HIGH-FREQUENCY COPPER metal futures symbolic time series price fluctuation PREDICTION 高频 金属期货 符号时间序列 价格波动 预测
  • 相关文献

参考文献4

二级参考文献59

  • 1李红权,马超群,邹琳.中国证券市场的混沌动力学特征研究[J].中国管理科学,2005,13(z1):194-200. 被引量:9
  • 2徐正国,张世英.多维高频数据的“已实现”波动建模研究[J].系统工程学报,2006,21(1):6-11. 被引量:20
  • 3张晓莉,严广乐.中国股票市场长期记忆特征的实证研究[J].系统工程学报,2007,22(2):190-194. 被引量:15
  • 4Tsay,R. S.. Analysis of Financial Time Series[M].北京:机械工业出版社,2006. 被引量:1
  • 5Wang, Y. , Liu, L. , Gu, R.. Analysis of efficiency for Shenzhen stock market based on muhifractal detrended fluctuation analysis [J]. International Review of Financial Analysis, 2009, 18(5): 271-276. 被引量:1
  • 6Bhardwaj, G. , Swanson, N. R.. An empirical investi gation of the usefulness of ARFIMA models for predic ting macroeconomic and financial time series [J]. Journal of Econometrics, 2006, 131(1): 539-578. 被引量:1
  • 7Connor, N. O. , Madden, M. G.. A neural network approach to predicting stock exchange movements using external factors [J]. Knowledge-based System, 2006,19 (5) : 371-378. 被引量:1
  • 8Tang, X. Z., Tracy, E. R., Boozer, A. D., et al Symbol sequence statistics in noisy chaotic signal recon struetion [J]. Physical ReviewE, 1995, 51(5): 3871- 3889. 被引量:1
  • 9Tang, X. Z. , Tracy, E. R. , Brown, R.. Symbol statistics and spatio-temporal systems [J]. Physica D, 1997, 102(3): 253-261. 被引量:1
  • 10Daw,C. , Finney, C. , Tracy, E.. A review of sym bolic analysis of experimental data [J]. Review of Scientific Instruments, 2003, 74(2) : 916-930. 被引量:1

共引文献28

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部