期刊文献+

基于LSTM-NPKDE的锂离子电池SOC预测与不确定分析 被引量:8

Forecast and Uncertainty Analysis of Lithium-ion Batteries SOC Based on LSTM-NPKDE
下载PDF
导出
摘要 提出一种基于长短期记忆(LSTM)网络的锂离子电池荷电状态(SOC)预测方法。以锂离子电池的充放电电流和电压作为模型输入,对锂离子电池SOC进行预测,结果表明LSTM网络的预测精度高于BP神经网络、BP-PSO混合模型和小波神经网络。利用非参数核密度估计方法来计算锂离子电池SOC预测的置信区间,结果表明能够准确计算不同置信水平下锂离子电池SOC预测的不确定性。 A forecast method of the state of charge(SOC)of lithium-ion battery based on the long-short term memory(LSTM)network was proposed.The SOC of lithium-ion battery was forecasted by taking the charge-discharge current and voltage of lithium-ion battery as model inputs.The results show that the forecasting accuracy of LSTMnetwork is higher than that of BP neural network,BP-PSO hybrid model and wavelet neural network(WNN).The nonparametric kernel density estimation(NPKDE)method was used to calculate the confidence interval of the SOC forecast of lithium-ion batteries.The calculation results show that the confidence interval based on NPKDE can accurately calculate the uncertainty of the SOC forecast of lithium-ion batteries at different confidence levels.
作者 李文启 高东学 李朝晖 饶宇飞 顾波 LI Wenqi;GAO Dongxue;LI Zhaohui;RAO Yufei;GU Bo(State Grid Henan Electric Power Company,Zhengzhou 450000,China;State Grid Henan Electric Power Research Institute,Zhengzhou 450052,China;North China University of Water Resources and Electric Power,Zhengzhou 450045,China)
出处 《电器与能效管理技术》 2020年第5期44-50,共7页 Electrical & Energy Management Technology
基金 国网河南省电力公司科技项目(5217021600A3)。
关键词 锂离子电池 荷电状态 长短期记忆网络 预测不确定性 置信区间 lithium-ion battery state of charge(SOC) long-short term memory network forecast uncertainty confidence interval
  • 相关文献

参考文献10

二级参考文献266

共引文献531

同被引文献86

引证文献8

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部