摘要
理论力学中动力学普遍方程,在分析力学中称为d’Alembert-Lagrange原理。动力学普遍方程之普遍在于,由它不仅可导出动力学普遍定理,可导出完整约束系统和非完整约束系统的运动微分方程,还可导出积分变分原理。
The general equations of dynamics in theoretical mechanics are referred to as the principle of d’Alembert-Lagrange in analytical mechanics.The generality of these equations lies on the fact that from these equations not only can the general theorems of dynamics be proved,but also can the differential equations of motion for systems with the holomonic or inholomonic constraints be derived,as well as the related integral functional principles.
作者
梅凤翔
MEI Fengxiang(Department of Mechanics,Beijing Institute of Technology,Beijing 100081,China)
出处
《力学与实践》
北大核心
2020年第2期209-213,共5页
Mechanics in Engineering
基金
国家自然科学基金资助项目(11272050,11572034)。
关键词
动力学普遍方程
中心方程
运动方程
积分变分原理
the general equation of dynamics
central equation
equation of motion
the integral functional principle