摘要
为使基于电压源型换流器的柔性直流(VSC-HVDC)互联系统中的新能源端整体参与交流电网的频率调整,提出一种带频率-电压死区的换流站端有功控制策略。该控制策略利用频率-电压死区限值,通过VSC-HVDC输出功率的实时控制,在系统侧交流电网发生频率变化时,风机转子的动能储备短时内增加或减少有功输出,使风机转速下降或增高,通过增加或减少风机转子中的动能储备来缓解交流系统端的不平衡有功功率,通过VSC-HVDC互联系统作出频率响应参与调频。最后,利用PSCAD/EMTDC对该控制策略进行仿真验证,结果表明所提策略提高了含新能源接入的两端VSC-HVDC互联系统的频率稳定性。
In order to make the new energy terminal of voltage source converter based high voltage direct current(VSC-HVDC)interconnected system with new energy access participate in the frequency adjustment of AC network as a whole,an active power control strategy for the converter station terminal with frequency-voltage dead zone is proposed.This strategy using frequency-voltage dead-zone limit and real-time control of the output power of VSC-HVDC.When the frequency of AC network changes on the system side,the kinetic energy reserve of the wind rotor increases or decreases the active output in a short time,so that the speed of the wind Turbine decreases or increases.By increasing/reducing the kinetic energy reserve in the rotor of the wind motor,the unbalanced active power at the AC system terminal can be alleviated,through the VSC-HVDC interconnected system to make frequency response to participate in frequency modulation.Finally,simulations with PSCAD/EMTDC verify that the proposed control strategy is able to enhance the frequency stability of the VSC-HVDC interconnection system with new energy access.
作者
徐晓颖
吴继平
滕贤亮
陈谦
喻洁
丁恰
XU Xiaoying;WU Jiping;TENG Xianliang;CHEN Qian;YU Jie;DING Qia(College of Energy and Electrical Engineering,Hohai University,Nanjing 211100,China;NARI Group(State Grid Electric Power Research Institute)Co.,Ltd.,Nanjing 211106,China;State Key Laboratory of Smart Grid Protection and Operation Control,NARI Group Co.,Ltd.,Nanjing 211106,China;College of Electrical Engineering,Southeast University,Nanjing 210096,China)
出处
《电力工程技术》
2020年第3期8-14,共7页
Electric Power Engineering Technology
基金
国家重点研发计划资助项目“多能源互补的交直流电网协同调度控制关键技术研究与示范”(2016YFB0900502)。
关键词
风电机群
基于电压源型换流器的柔性直流(VSC-HVDC)
旋转储能
一次调频
频率-电压死区
wind turbines
voltage source converter based high voltage direct current(VSC-HVDC)
rotation energy storage
primary frequency modulation
frequency-voltage dead-zone